Math Problem Statement

حل المساله

Solution

To solve the integral

y2(y+2)14dy\int y^2 (y + 2)^{\frac{1}{4}} \, dy

we will use the method of substitution. Let us set

u=y+2u = y + 2

then

du=dydu = dy

and since

y=u2,y = u - 2,

we can rewrite the integral in terms of uu:

y2(y+2)14dy=(u2)2u14du.\int y^2 (y + 2)^{\frac{1}{4}} \, dy = \int (u - 2)^2 u^{\frac{1}{4}} \, du.

Now, expand (u2)2(u - 2)^2:

(u2)2=u24u+4.(u - 2)^2 = u^2 - 4u + 4.

Substituting this back into the integral, we get:

(u24u+4)u14du.\int (u^2 - 4u + 4) u^{\frac{1}{4}} \, du.

Now, distribute u14u^{\frac{1}{4}}:

u2u144uu14+4u14du.\int u^2 \cdot u^{\frac{1}{4}} - 4u \cdot u^{\frac{1}{4}} + 4 \cdot u^{\frac{1}{4}} \, du.

This simplifies to:

u2+144u1+14+4u14du=u944u54+4u14du.\int u^{2 + \frac{1}{4}} - 4u^{1 + \frac{1}{4}} + 4u^{\frac{1}{4}} \, du = \int u^{\frac{9}{4}} - 4u^{\frac{5}{4}} + 4u^{\frac{1}{4}} \, du.

Integrate each term separately:

u94du=u94+194+1=u134134=413u134,\int u^{\frac{9}{4}} \, du = \frac{u^{\frac{9}{4} + 1}}{\frac{9}{4} + 1} = \frac{u^{\frac{13}{4}}}{\frac{13}{4}} = \frac{4}{13} u^{\frac{13}{4}},

4u54du=4u54+154+1=4u9494=169u94,\int -4u^{\frac{5}{4}} \, du = -4 \cdot \frac{u^{\frac{5}{4} + 1}}{\frac{5}{4} + 1} = -4 \cdot \frac{u^{\frac{9}{4}}}{\frac{9}{4}} = -\frac{16}{9} u^{\frac{9}{4}},

4u14du=4u14+114+1=4u5454=165u54.\int 4u^{\frac{1}{4}} \, du = 4 \cdot \frac{u^{\frac{1}{4} + 1}}{\frac{1}{4} + 1} = 4 \cdot \frac{u^{\frac{5}{4}}}{\frac{5}{4}} = \frac{16}{5} u^{\frac{5}{4}}.

Combining these results, we have:

y2(y+2)14dy=413u134169u94+165u54+C.\int y^2 (y + 2)^{\frac{1}{4}} \, dy = \frac{4}{13} u^{\frac{13}{4}} - \frac{16}{9} u^{\frac{9}{4}} + \frac{16}{5} u^{\frac{5}{4}} + C.

Finally, substitute back u=y+2u = y + 2:

413(y+2)134169(y+2)94+165(y+2)54+C.\frac{4}{13} (y + 2)^{\frac{13}{4}} - \frac{16}{9} (y + 2)^{\frac{9}{4}} + \frac{16}{5} (y + 2)^{\frac{5}{4}} + C.

This is the solution to the integral. Do you have any questions or would you like more details?

Here are 5 questions you might ask:

  1. Can you explain the method of substitution in integrals?
  2. How do you choose the substitution u=y+2u = y + 2 in this integral?
  3. What are the steps to simplify the integral after substitution?
  4. How do you integrate each term separately in the expanded integral?
  5. Can you show another example of using substitution in integrals?

Tip: When performing substitution in integrals, always remember to change both the variable and the differential to match the substitution.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Substitution Method

Formulas

Integral of u-substitution

Theorems

-

Suitable Grade Level

Advanced High School