Math Problem Statement

Evaluate the integral ∫e^(2x)cos(x) dx and derive the equation shown.

Solution

The integral displayed is:

e2xcosxdx=12e2xcosx+14e2xsinx14e2xcosxdx\int e^{2x} \cos x \, dx = \frac{1}{2} e^{2x} \cos x + \frac{1}{4} e^{2x} \sin x - \frac{1}{4} \int e^{2x} \cos x \, dx

This equation is derived using integration by parts. Let me provide a step-by-step explanation of how this equation is constructed:


Step 1: Integration by Parts Formula

The formula for integration by parts is:

udv=uvvdu\int u \, dv = uv - \int v \, du


Step 2: Assign uu and dvdv

Here, the given integral is e2xcosxdx\int e^{2x} \cos x \, dx.

  • Let u=cosxu = \cos x, so du=sinxdxdu = -\sin x \, dx.
  • Let dv=e2xdxdv = e^{2x} \, dx, so v=12e2xv = \frac{1}{2} e^{2x} (since e2xdx=12e2x\int e^{2x} \, dx = \frac{1}{2} e^{2x}).

Step 3: Apply Integration by Parts

Using the formula:

e2xcosxdx=(12e2xcosx)(12e2x(sinx)dx)\int e^{2x} \cos x \, dx = \left( \frac{1}{2} e^{2x} \cos x \right) - \int \left( \frac{1}{2} e^{2x} (-\sin x) \, dx \right)

=12e2xcosx+12e2xsinxdx= \frac{1}{2} e^{2x} \cos x + \frac{1}{2} \int e^{2x} \sin x \, dx


Step 4: Repeat for e2xsinxdx\int e^{2x} \sin x \, dx

For the new integral, e2xsinxdx\int e^{2x} \sin x \, dx, apply integration by parts again:

  • Let u=sinxu = \sin x, so du=cosxdxdu = \cos x \, dx.
  • Let dv=e2xdxdv = e^{2x} \, dx, so v=12e2xv = \frac{1}{2} e^{2x}.

Applying the formula again:

e2xsinxdx=(12e2xsinx)(12e2xcosxdx)\int e^{2x} \sin x \, dx = \left( \frac{1}{2} e^{2x} \sin x \right) - \int \left( \frac{1}{2} e^{2x} \cos x \, dx \right)

=12e2xsinx12e2xcosxdx= \frac{1}{2} e^{2x} \sin x - \frac{1}{2} \int e^{2x} \cos x \, dx


Step 5: Substitution and Solving

Substitute this result into the original equation:

e2xcosxdx=12e2xcosx+14e2xsinx14e2xcosxdx\int e^{2x} \cos x \, dx = \frac{1}{2} e^{2x} \cos x + \frac{1}{4} e^{2x} \sin x - \frac{1}{4} \int e^{2x} \cos x \, dx

Combine terms to isolate e2xcosxdx\int e^{2x} \cos x \, dx:

e2xcosxdx+14e2xcosxdx=12e2xcosx+14e2xsinx\int e^{2x} \cos x \, dx + \frac{1}{4} \int e^{2x} \cos x \, dx = \frac{1}{2} e^{2x} \cos x + \frac{1}{4} e^{2x} \sin x

54e2xcosxdx=12e2xcosx+14e2xsinx\frac{5}{4} \int e^{2x} \cos x \, dx = \frac{1}{2} e^{2x} \cos x + \frac{1}{4} e^{2x} \sin x

e2xcosxdx=15(12e2xcosx+14e2xsinx)\int e^{2x} \cos x \, dx = \frac{1}{5} \left( \frac{1}{2} e^{2x} \cos x + \frac{1}{4} e^{2x} \sin x \right)

e2xcosxdx=12e2xcosx+14e2xsinx14e2xcosxdx\int e^{2x} \cos x \, dx = \frac{1}{2} e^{2x} \cos x + \frac{1}{4} e^{2x} \sin x - \frac{1}{4} \int e^{2x} \cos x \, dx


This matches the result shown in your image.


Would you like me to simplify further or explain any specific part in detail?

5 Questions You Could Explore:

  1. How is integration by parts useful for solving these types of integrals?
  2. Can this method be applied to other combinations of exponentials and trigonometric functions?
  3. What are the properties of integrals involving eaxe^{ax} multiplied by trigonometric functions?
  4. How would the solution change if the exponential were e3xe^{3x} instead of e2xe^{2x}?
  5. How can we use this solution to evaluate definite integrals?

Tip:

Integration by parts often involves recursive patterns; keep track of repeated integrals to simplify your calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration by Parts
Exponential Functions
Trigonometric Functions
Recursive Integration

Formulas

Integration by parts: ∫u dv = uv - ∫v du
Derivative of exponential functions: d/dx(e^(ax)) = a * e^(ax)
Integral of e^(2x): ∫e^(2x) dx = (1/2)e^(2x)

Theorems

Integration by Parts Theorem
Recursive Patterns in Integration

Suitable Grade Level

College or Advanced High School (Grades 11-12)