Math Problem Statement

Use integration by parts to show that ∫ e^x cos(2x) dx = (2e^x / 5) sin(2x) + (e^x / 5) cos(2x) + c, c ∈ ℝ.

Solution

We are asked to use integration by parts to solve the integral

I=excos(2x)dxI = \int e^x \cos(2x) \, dx

Step 1: Set up integration by parts

Recall the formula for integration by parts:

udv=uvvdu\int u \, dv = uv - \int v \, du

We need to select parts for uu and dvdv. Let:

  • u=exu = e^x, so du=exdxdu = e^x \, dx
  • dv=cos(2x)dxdv = \cos(2x) \, dx, so v=12sin(2x)v = \frac{1}{2} \sin(2x) (since the integral of cos(2x)\cos(2x) is 12sin(2x)\frac{1}{2} \sin(2x))

Step 2: Apply integration by parts

Using the formula for integration by parts:

I=ex12sin(2x)12sin(2x)exdxI = e^x \cdot \frac{1}{2} \sin(2x) - \int \frac{1}{2} \sin(2x) \cdot e^x \, dx

This simplifies to:

I=ex2sin(2x)12exsin(2x)dxI = \frac{e^x}{2} \sin(2x) - \frac{1}{2} \int e^x \sin(2x) \, dx

Step 3: Solve the new integral

We now need to compute exsin(2x)dx\int e^x \sin(2x) \, dx. Let this integral be JJ, so:

J=exsin(2x)dxJ = \int e^x \sin(2x) \, dx

We apply integration by parts again. Let:

  • u=exu = e^x, so du=exdxdu = e^x \, dx
  • dv=sin(2x)dxdv = \sin(2x) \, dx, so v=12cos(2x)v = -\frac{1}{2} \cos(2x)

Thus:

J=ex(12cos(2x))12cos(2x)exdxJ = e^x \cdot \left( -\frac{1}{2} \cos(2x) \right) - \int -\frac{1}{2} \cos(2x) \cdot e^x \, dx

Simplifying:

J=ex2cos(2x)+12excos(2x)dxJ = -\frac{e^x}{2} \cos(2x) + \frac{1}{2} \int e^x \cos(2x) \, dx

Step 4: Solve for II

Notice that the integral on the right side of the equation for JJ is the original integral II. Thus:

J=ex2cos(2x)+12IJ = -\frac{e^x}{2} \cos(2x) + \frac{1}{2} I

Substitute this into the equation for II:

I=ex2sin(2x)12(ex2cos(2x)+12I)I = \frac{e^x}{2} \sin(2x) - \frac{1}{2} \left( -\frac{e^x}{2} \cos(2x) + \frac{1}{2} I \right)

Simplify:

I=ex2sin(2x)+ex4cos(2x)14II = \frac{e^x}{2} \sin(2x) + \frac{e^x}{4} \cos(2x) - \frac{1}{4} I

Step 5: Solve for II

Now, collect terms involving II:

I+14I=ex2sin(2x)+ex4cos(2x)I + \frac{1}{4} I = \frac{e^x}{2} \sin(2x) + \frac{e^x}{4} \cos(2x)

This simplifies to:

54I=ex2sin(2x)+ex4cos(2x)\frac{5}{4} I = \frac{e^x}{2} \sin(2x) + \frac{e^x}{4} \cos(2x)

Multiply both sides by 45\frac{4}{5} to solve for II:

I=2ex5sin(2x)+ex5cos(2x)I = \frac{2e^x}{5} \sin(2x) + \frac{e^x}{5} \cos(2x)

Thus, we have shown that:

excos(2x)dx=2ex5sin(2x)+ex5cos(2x)+C\int e^x \cos(2x) \, dx = \frac{2e^x}{5} \sin(2x) + \frac{e^x}{5} \cos(2x) + C

where CC is the constant of integration.


Would you like further details on any specific step, or do you have any questions?

Related Questions:

  1. How does integration by parts work for products of exponential and trigonometric functions in general?
  2. What is the derivation of the integration formula for cos(2x)\cos(2x)?
  3. Can we use substitution instead of integration by parts for similar integrals?
  4. How do the signs in trigonometric integrals like cos(2x)\cos(2x) and sin(2x)\sin(2x) affect the integration process?
  5. What are common mistakes made when solving integrals using integration by parts?

Tip: Always double-check which part of the product you are choosing as uu and dvdv to simplify the resulting integral.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration by Parts
Trigonometric Integrals
Exponential Functions

Formulas

Integration by Parts: ∫ u dv = uv - ∫ v du
Trigonometric Integral: ∫ cos(2x) dx = (1/2) sin(2x)
Trigonometric Integral: ∫ sin(2x) dx = -(1/2) cos(2x)

Theorems

Integration by Parts

Suitable Grade Level

College-level Calculus