Math Problem Statement

integrate e^-2x*sin(x) using partial integration

Solution

To integrate e2xsin(x)dx\int e^{-2x} \sin(x) \, dx using integration by parts, we can proceed as follows:

Step 1: Set Up Integration by Parts

For integration by parts, we use the formula: udv=uvvdu\int u \, dv = uv - \int v \, du

Choose:

  • u=sin(x)u = \sin(x) (so that du=cos(x)dxdu = \cos(x) \, dx)
  • dv=e2xdxdv = e^{-2x} \, dx (so that v=e2xdx=12e2xv = \int e^{-2x} \, dx = -\frac{1}{2} e^{-2x})

Step 2: Apply Integration by Parts

Substitute uu and dvdv into the integration by parts formula: e2xsin(x)dx=12sin(x)e2x12e2xcos(x)dx\int e^{-2x} \sin(x) \, dx = -\frac{1}{2} \sin(x) e^{-2x} - \int -\frac{1}{2} e^{-2x} \cos(x) \, dx

This simplifies to: e2xsin(x)dx=12sin(x)e2x+12e2xcos(x)dx\int e^{-2x} \sin(x) \, dx = -\frac{1}{2} \sin(x) e^{-2x} + \frac{1}{2} \int e^{-2x} \cos(x) \, dx

Step 3: Integrate e2xcos(x)dx\int e^{-2x} \cos(x) \, dx by Parts Again

Now, we need to integrate e2xcos(x)dx\int e^{-2x} \cos(x) \, dx using integration by parts again.

Choose:

  • u=cos(x)u = \cos(x) (so that du=sin(x)dxdu = -\sin(x) \, dx)
  • dv=e2xdxdv = e^{-2x} \, dx (so that v=12e2xv = -\frac{1}{2} e^{-2x})

Applying integration by parts to e2xcos(x)dx\int e^{-2x} \cos(x) \, dx: e2xcos(x)dx=12cos(x)e2x12e2x(sin(x))dx\int e^{-2x} \cos(x) \, dx = -\frac{1}{2} \cos(x) e^{-2x} - \int -\frac{1}{2} e^{-2x} (-\sin(x)) \, dx

Simplify: e2xcos(x)dx=12cos(x)e2x12e2xsin(x)dx\int e^{-2x} \cos(x) \, dx = -\frac{1}{2} \cos(x) e^{-2x} - \frac{1}{2} \int e^{-2x} \sin(x) \, dx

Step 4: Set Up a System of Equations

Now we have the original integral e2xsin(x)dx\int e^{-2x} \sin(x) \, dx in terms of itself: e2xsin(x)dx=12sin(x)e2x+12(12cos(x)e2x12e2xsin(x)dx)\int e^{-2x} \sin(x) \, dx = -\frac{1}{2} \sin(x) e^{-2x} + \frac{1}{2} \left(-\frac{1}{2} \cos(x) e^{-2x} - \frac{1}{2} \int e^{-2x} \sin(x) \, dx \right)

Simplify and solve for e2xsin(x)dx\int e^{-2x} \sin(x) \, dx: e2xsin(x)dx=12sin(x)e2x14cos(x)e2x14e2xsin(x)dx\int e^{-2x} \sin(x) \, dx = -\frac{1}{2} \sin(x) e^{-2x} - \frac{1}{4} \cos(x) e^{-2x} - \frac{1}{4} \int e^{-2x} \sin(x) \, dx

Combine terms to isolate the integral: e2xsin(x)dx+14e2xsin(x)dx=12sin(x)e2x14cos(x)e2x\int e^{-2x} \sin(x) \, dx + \frac{1}{4} \int e^{-2x} \sin(x) \, dx = -\frac{1}{2} \sin(x) e^{-2x} - \frac{1}{4} \cos(x) e^{-2x}

Factor out e2xsin(x)dx\int e^{-2x} \sin(x) \, dx: (1+14)e2xsin(x)dx=12sin(x)e2x14cos(x)e2x\left(1 + \frac{1}{4}\right) \int e^{-2x} \sin(x) \, dx = -\frac{1}{2} \sin(x) e^{-2x} - \frac{1}{4} \cos(x) e^{-2x}

This simplifies to: 54e2xsin(x)dx=12sin(x)e2x14cos(x)e2x\frac{5}{4} \int e^{-2x} \sin(x) \, dx = -\frac{1}{2} \sin(x) e^{-2x} - \frac{1}{4} \cos(x) e^{-2x}

Finally, solve for e2xsin(x)dx\int e^{-2x} \sin(x) \, dx: e2xsin(x)dx=12sin(x)e2x14cos(x)e2x45\int e^{-2x} \sin(x) \, dx = -\frac{1}{2} \sin(x) e^{-2x} - \frac{1}{4} \cos(x) e^{-2x} \cdot \frac{4}{5}

So, e2xsin(x)dx=25sin(x)e2x15cos(x)e2x+C\int e^{-2x} \sin(x) \, dx = -\frac{2}{5} \sin(x) e^{-2x} - \frac{1}{5} \cos(x) e^{-2x} + C

Let me know if you'd like more clarification or have further questions.

  1. How do we choose functions uu and dvdv in integration by parts?
  2. Can we always use integration by parts to solve integrals like this?
  3. What are other methods for solving complex integrals?
  4. How would we solve a similar integral involving eaxcos(bx)e^{ax} \cos(bx)?
  5. How do we apply integration by parts in cases with higher powers of xx alongside exponential functions?

Tip: When using integration by parts twice leads to the original integral, setting up a system of equations to solve for it is a powerful trick.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Integration by Parts
Exponential Functions
Trigonometric Functions

Formulas

∫ u dv = uv - ∫ v du
∫ e^(-2x) sin(x) dx
∫ e^(-2x) cos(x) dx

Theorems

Integration by Parts

Suitable Grade Level

Grades 11-12