Math Problem Statement

intergrate e^-3x cos 2x dx

Solution

We are asked to integrate e3xcos(2x)dxe^{-3x} \cos(2x) \, dx.

To solve this, we use the integration by parts technique twice, or we can recognize it as a standard case of solving by the reduction formula for integrals of the form eaxcos(bx)dxe^{ax} \cos(bx) \, dx.

Let's go through the process step by step using integration by parts:

Step 1: Set up the integration by parts formula

We know the formula for integration by parts is:

udv=uvvdu\int u \, dv = u v - \int v \, du

We will use this twice.

Step 2: First integration by parts

Let:

  • u=cos(2x)u = \cos(2x), so du=2sin(2x)dxdu = -2 \sin(2x) \, dx
  • dv=e3xdxdv = e^{-3x} \, dx, so v=e3x3v = \frac{e^{-3x}}{-3}

Now apply the integration by parts formula:

e3xcos(2x)dx=e3xcos(2x)3(e3x(2)sin(2x)3)dx\int e^{-3x} \cos(2x) \, dx = \frac{e^{-3x} \cos(2x)}{-3} - \int \left( \frac{e^{-3x} (-2) \sin(2x)}{-3} \right) \, dx

Simplifying this:

e3xcos(2x)dx=e3xcos(2x)3+23e3xsin(2x)dx\int e^{-3x} \cos(2x) \, dx = \frac{e^{-3x} \cos(2x)}{-3} + \frac{2}{3} \int e^{-3x} \sin(2x) \, dx

Step 3: Second integration by parts

Now we integrate e3xsin(2x)dx\int e^{-3x} \sin(2x) \, dx by parts.

Let:

  • u=sin(2x)u = \sin(2x), so du=2cos(2x)dxdu = 2 \cos(2x) \, dx
  • dv=e3xdxdv = e^{-3x} \, dx, so v=e3x3v = \frac{e^{-3x}}{-3}

Now applying integration by parts again:

e3xsin(2x)dx=e3xsin(2x)3(e3x(2)cos(2x)3)dx\int e^{-3x} \sin(2x) \, dx = \frac{e^{-3x} \sin(2x)}{-3} - \int \left( \frac{e^{-3x} (2) \cos(2x)}{-3} \right) \, dx

Simplifying this:

e3xsin(2x)dx=e3xsin(2x)323e3xcos(2x)dx\int e^{-3x} \sin(2x) \, dx = \frac{e^{-3x} \sin(2x)}{-3} - \frac{2}{3} \int e^{-3x} \cos(2x) \, dx

Step 4: Solving the system of equations

Now we substitute this result back into the original equation:

e3xcos(2x)dx=e3xcos(2x)3+23(e3xsin(2x)323e3xcos(2x)dx)\int e^{-3x} \cos(2x) \, dx = \frac{e^{-3x} \cos(2x)}{-3} + \frac{2}{3} \left( \frac{e^{-3x} \sin(2x)}{-3} - \frac{2}{3} \int e^{-3x} \cos(2x) \, dx \right)

Simplifying:

e3xcos(2x)dx=e3xcos(2x)3+23e3xsin(2x)349e3xcos(2x)dx\int e^{-3x} \cos(2x) \, dx = \frac{e^{-3x} \cos(2x)}{-3} + \frac{2}{3} \cdot \frac{e^{-3x} \sin(2x)}{-3} - \frac{4}{9} \int e^{-3x} \cos(2x) \, dx

Step 5: Solve for the integral

Now we gather all terms involving e3xcos(2x)dx\int e^{-3x} \cos(2x) \, dx:

e3xcos(2x)dx+49e3xcos(2x)dx=e3xcos(2x)3+29e3xsin(2x)\int e^{-3x} \cos(2x) \, dx + \frac{4}{9} \int e^{-3x} \cos(2x) \, dx = \frac{e^{-3x} \cos(2x)}{-3} + \frac{2}{9} e^{-3x} \sin(2x)

(1+49)e3xcos(2x)dx=e3xcos(2x)3+29e3xsin(2x)\left( 1 + \frac{4}{9} \right) \int e^{-3x} \cos(2x) \, dx = \frac{e^{-3x} \cos(2x)}{-3} + \frac{2}{9} e^{-3x} \sin(2x)

139e3xcos(2x)dx=e3xcos(2x)3+29e3xsin(2x)\frac{13}{9} \int e^{-3x} \cos(2x) \, dx = \frac{e^{-3x} \cos(2x)}{-3} + \frac{2}{9} e^{-3x} \sin(2x)

Finally, solving for the integral:

e3xcos(2x)dx=913(e3xcos(2x)3+29e3xsin(2x))\int e^{-3x} \cos(2x) \, dx = \frac{9}{13} \left( \frac{e^{-3x} \cos(2x)}{-3} + \frac{2}{9} e^{-3x} \sin(2x) \right)

e3xcos(2x)dx=e3x13(3cos(2x)2sin(2x))+C\int e^{-3x} \cos(2x) \, dx = \frac{e^{-3x}}{13} \left( -3 \cos(2x) - 2 \sin(2x) \right) + C

Thus, the solution is:

e3xcos(2x)dx=e3x13(3cos(2x)2sin(2x))+C\boxed{\int e^{-3x} \cos(2x) \, dx = \frac{e^{-3x}}{13} (-3 \cos(2x) - 2 \sin(2x)) + C}

Would you like more details or have any questions?

Here are 5 related questions:

  1. How does the reduction formula work for integrals like this?
  2. What are the key conditions for applying integration by parts?
  3. How would you approach the integral eaxsin(bx)dxe^{ax} \sin(bx) \, dx?
  4. Why do we use integration by parts twice in this problem?
  5. Can you explain the process for solving systems of integrals?

Tip: When solving complex integrals, organizing terms carefully helps avoid mistakes when performing multiple integration steps.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration by Parts
Reduction Formula
Exponential Functions
Trigonometric Functions

Formulas

Integration by parts: ∫ u dv = u v - ∫ v du
Reduction formula for integrals of the form ∫ e^(ax) cos(bx) dx

Theorems

Integration by Parts
Reduction Formula

Suitable Grade Level

College-Level Calculus