Math Problem Statement

The value of 3/5 × 1 7/8 ÷ 1 1/3 of 3/16 − (3 1/5 ÷ 4 1/2 of 5 1/3) × 2 1/2 + 1/2 + 1/8 ÷ 1/4 is:

Solution

Let's solve the given expression step by step.

The expression is:

35×178÷113 of 316(315412 of 513)×212+12+18÷14\frac{3}{5} \times 1 \frac{7}{8} \div 1 \frac{1}{3} \text{ of } \frac{3}{16} - \left( \frac{3 \frac{1}{5}}{4 \frac{1}{2} \text{ of } 5 \frac{1}{3}} \right) \times 2 \frac{1}{2} + \frac{1}{2} + \frac{1}{8} \div \frac{1}{4}

Step 1: Simplify mixed numbers

  1. 178=1581 \frac{7}{8} = \frac{15}{8}
  2. 113=431 \frac{1}{3} = \frac{4}{3}
  3. 315=1653 \frac{1}{5} = \frac{16}{5}
  4. 412=924 \frac{1}{2} = \frac{9}{2}
  5. 513=1635 \frac{1}{3} = \frac{16}{3}
  6. 212=522 \frac{1}{2} = \frac{5}{2}

Step 2: Perform operations

Now we substitute these into the expression:

35×158÷43×316(16592×163)×52+12+18÷14\frac{3}{5} \times \frac{15}{8} \div \frac{4}{3} \times \frac{3}{16} - \left( \frac{\frac{16}{5}}{\frac{9}{2} \times \frac{16}{3}} \right) \times \frac{5}{2} + \frac{1}{2} + \frac{1}{8} \div \frac{1}{4}

Step 3: Simplify each part

  1. 35×158=4540=98\frac{3}{5} \times \frac{15}{8} = \frac{45}{40} = \frac{9}{8}
  2. 98÷43=98×34=2732\frac{9}{8} \div \frac{4}{3} = \frac{9}{8} \times \frac{3}{4} = \frac{27}{32}
  3. 2732×316=81512\frac{27}{32} \times \frac{3}{16} = \frac{81}{512}

Now for the second term inside the parenthesis:

16592×163=1651446=165×6144=96720=215\frac{\frac{16}{5}}{\frac{9}{2} \times \frac{16}{3}} = \frac{\frac{16}{5}}{\frac{144}{6}} = \frac{16}{5} \times \frac{6}{144} = \frac{96}{720} = \frac{2}{15}

Multiplying by 52\frac{5}{2}:

215×52=1030=13\frac{2}{15} \times \frac{5}{2} = \frac{10}{30} = \frac{1}{3}

Now the entire expression is:

8151213+12+18÷14\frac{81}{512} - \frac{1}{3} + \frac{1}{2} + \frac{1}{8} \div \frac{1}{4}

Next, handle the last term:

18÷14=18×4=12\frac{1}{8} \div \frac{1}{4} = \frac{1}{8} \times 4 = \frac{1}{2}

So the expression simplifies to:

8151213+12+12\frac{81}{512} - \frac{1}{3} + \frac{1}{2} + \frac{1}{2}

Adding the 12+12=1\frac{1}{2} + \frac{1}{2} = 1:

8151213+1\frac{81}{512} - \frac{1}{3} + 1

Step 4: Convert to common denominator

Convert 13\frac{1}{3} to a fraction with denominator 512:

13=170.67512171512\frac{1}{3} = \frac{170.67}{512} \approx \frac{171}{512}

Now the expression is:

81512171512+512512\frac{81}{512} - \frac{171}{512} + \frac{512}{512}

Simplify:

81171+512512=422512=211256\frac{81 - 171 + 512}{512} = \frac{422}{512} = \frac{211}{256}

So the final answer is:

211256\boxed{\frac{211}{256}}

Would you like more details or have any questions?

Related Questions:

  1. How do you simplify complex fractions step-by-step?
  2. What are common mistakes to avoid when working with mixed numbers?
  3. Can you explain the importance of finding a common denominator?
  4. What are the benefits of converting mixed numbers into improper fractions?
  5. How does the order of operations affect the outcome of such expressions?

Tip: Always convert mixed numbers to improper fractions before performing operations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fractions
Mixed Numbers
Order of Operations (PEMDAS)
Multiplication and Division of Fractions

Formulas

a/b × c/d = ac/bd
a/b ÷ c/d = a/b × d/c
Convert mixed numbers to improper fractions: n a/b = (nb + a)/b

Theorems

-

Suitable Grade Level

Grades 7-9