Math Problem Statement

2/3 (1-5)
3/4 (6-8)
1/2(1/3-2)
1/5(3+1/2)
2/5 (1+3/4)
3/4 [2-(1+3)+5]
1/2 [4+2(1+5)-6]
2/3[2-1/3 (1-5)-2]
3{1/2-4[2-1/3 (1-5)-5}
3/4{2/5-3[4+5(1-2)-1/3)+6
5/6{1/2-1/4 [3-1/2 (1+3)]-1/5
2/3{3/4+2/9[1/2-3/5](2-1/5)+2]

Solution

Let's simplify each expression step by step:

  1. 23(15)\frac{2}{3}(1 - 5)
    15=41 - 5 = -4 23×(4)=83\frac{2}{3} \times (-4) = \frac{-8}{3} Answer: 83\frac{-8}{3}

  2. 34(68)\frac{3}{4}(6 - 8)
    68=26 - 8 = -2 34×(2)=64=32\frac{3}{4} \times (-2) = \frac{-6}{4} = \frac{-3}{2} Answer: 32\frac{-3}{2}

  3. 12(132)\frac{1}{2}\left(\frac{1}{3} - 2\right)
    132=1363=53\frac{1}{3} - 2 = \frac{1}{3} - \frac{6}{3} = \frac{-5}{3} 12×53=56\frac{1}{2} \times \frac{-5}{3} = \frac{-5}{6} Answer: 56\frac{-5}{6}

  4. 15(3+12)\frac{1}{5}(3 + \frac{1}{2})
    3+12=62+12=723 + \frac{1}{2} = \frac{6}{2} + \frac{1}{2} = \frac{7}{2} 15×72=710\frac{1}{5} \times \frac{7}{2} = \frac{7}{10} Answer: 710\frac{7}{10}

  5. 25(1+34)\frac{2}{5}(1 + \frac{3}{4})
    1+34=44+34=741 + \frac{3}{4} = \frac{4}{4} + \frac{3}{4} = \frac{7}{4} 25×74=1420=710\frac{2}{5} \times \frac{7}{4} = \frac{14}{20} = \frac{7}{10} Answer: 710\frac{7}{10}

  6. 34[2(1+3)+5]\frac{3}{4}\left[2 - (1 + 3) + 5\right]
    1+3=41 + 3 = 4 24+5=32 - 4 + 5 = 3 34×3=94\frac{3}{4} \times 3 = \frac{9}{4} Answer: 94\frac{9}{4}

  7. 12[4+2(1+5)6]\frac{1}{2}\left[4 + 2(1 + 5) - 6\right]
    1+5=61 + 5 = 6 2×6=122 \times 6 = 12 4+126=104 + 12 - 6 = 10 12×10=5\frac{1}{2} \times 10 = 5 Answer: 5

  8. 23[213(15)2]\frac{2}{3}\left[2 - \frac{1}{3}(1 - 5) - 2\right]
    15=41 - 5 = -4 13×(4)=43\frac{1}{3} \times (-4) = \frac{-4}{3} 2432=0+43=432 - \frac{-4}{3} - 2 = 0 + \frac{4}{3} = \frac{4}{3} 23×43=89\frac{2}{3} \times \frac{4}{3} = \frac{8}{9} Answer: 89\frac{8}{9}

  9. 3{124[213(15)5]}3\left\{\frac{1}{2} - 4\left[2 - \frac{1}{3}(1 - 5) - 5\right]\right\}
    First, handle the inner expression: 15=41 - 5 = -4 13×(4)=43\frac{1}{3} \times (-4) = \frac{-4}{3} 2435=2+435=63+43153=532 - \frac{-4}{3} - 5 = 2 + \frac{4}{3} - 5 = \frac{6}{3} + \frac{4}{3} - \frac{15}{3} = \frac{-5}{3} Now, 4×53=2034 \times \frac{-5}{3} = \frac{-20}{3} 12203=12+203=36+406=436\frac{1}{2} - \frac{-20}{3} = \frac{1}{2} + \frac{20}{3} = \frac{3}{6} + \frac{40}{6} = \frac{43}{6} Finally, 3×436=1296=4323 \times \frac{43}{6} = \frac{129}{6} = \frac{43}{2} Answer: 432\frac{43}{2}

  10. 34{253[4+5(12)13]+6}\frac{3}{4}\left\{\frac{2}{5} - 3\left[4 + 5(1 - 2) - \frac{1}{3}\right] + 6\right\}
    This expression has several steps, so I'll break it down in parts. Let's start with the innermost expression: 12=11 - 2 = -1 5×(1)=55 \times (-1) = -5 4+(5)=14 + (-5) = -1 113=113=3313=43-1 - \frac{1}{3} = -1 - \frac{1}{3} = \frac{-3}{3} - \frac{1}{3} = \frac{-4}{3} Now, moving outward: 3×43=43 \times \frac{-4}{3} = -4 25(4)+6=25+4+6=25+10\frac{2}{5} - (-4) + 6 = \frac{2}{5} + 4 + 6 = \frac{2}{5} + 10 Converting 1010 to a fraction with denominator 5: 25+505=525\frac{2}{5} + \frac{50}{5} = \frac{52}{5} Finally, 34×525=15620=395\frac{3}{4} \times \frac{52}{5} = \frac{156}{20} = \frac{39}{5} Answer: 395\frac{39}{5}

  11. 56{1214[312(1+3)]15}\frac{5}{6}\left\{\frac{1}{2} - \frac{1}{4}\left[3 - \frac{1}{2}(1 + 3)\right] - \frac{1}{5}\right\}
    First, simplify the inner terms: 1+3=41 + 3 = 4 12×4=2\frac{1}{2} \times 4 = 2 32=13 - 2 = 1 Now, 14×1=14\frac{1}{4} \times 1 = \frac{1}{4} [ \frac{1}{2} - \frac{1}{4} - \frac{1}{5} = \frac{5}{10} - \frac{2.5}{10} = <ratio

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fractions
Algebraic Expressions
Order of Operations
Simplification

Formulas

Multiplication of fractions: a/b * c/d = ac/bd
Addition and subtraction of fractions: a/b ± c/d = (ad ± bc)/bd

Theorems

Distributive Property
PEMDAS (Order of Operations)

Suitable Grade Level

Grades 9-12