Math Problem Statement

Simplify the expression: \(\frac{2 \frac{3}{4}}{1 \frac{5}{6}} \div \frac{7}{8} \times \left( 1 \frac{1}{3} - \frac{3}{4} \right) + \frac{5}{7} \div \frac{3}{4} \text{ of } \frac{3}{7}\)

Solution

The expression you have uploaded is quite complex. Let's break it down step by step and simplify it.

Here is the expression:

234156÷78×(11334)+57÷34 of 37\frac{2 \frac{3}{4}}{1 \frac{5}{6}} \div \frac{7}{8} \times \left( 1 \frac{1}{3} - \frac{3}{4} \right) + \frac{5}{7} \div \frac{3}{4} \text{ of } \frac{3}{7}

Step 1: Convert all mixed numbers to improper fractions.

  1. 234=1142 \frac{3}{4} = \frac{11}{4}
  2. 156=1161 \frac{5}{6} = \frac{11}{6}
  3. 113=431 \frac{1}{3} = \frac{4}{3}

Now, the expression becomes:

114116÷78×(4334)+57÷34×37\frac{\frac{11}{4}}{\frac{11}{6}} \div \frac{7}{8} \times \left( \frac{4}{3} - \frac{3}{4} \right) + \frac{5}{7} \div \frac{3}{4} \times \frac{3}{7}

Step 2: Simplify the complex fraction 114116\frac{\frac{11}{4}}{\frac{11}{6}}.

When dividing fractions, multiply by the reciprocal of the denominator:

114×611=6644=32\frac{11}{4} \times \frac{6}{11} = \frac{66}{44} = \frac{3}{2}

So, the expression now becomes:

32÷78×(4334)+57÷34×37\frac{3}{2} \div \frac{7}{8} \times \left( \frac{4}{3} - \frac{3}{4} \right) + \frac{5}{7} \div \frac{3}{4} \times \frac{3}{7}

Step 3: Perform the division 32÷78\frac{3}{2} \div \frac{7}{8}.

32×87=2414=127\frac{3}{2} \times \frac{8}{7} = \frac{24}{14} = \frac{12}{7}

So, the expression now becomes:

127×(4334)+57÷34×37\frac{12}{7} \times \left( \frac{4}{3} - \frac{3}{4} \right) + \frac{5}{7} \div \frac{3}{4} \times \frac{3}{7}

Step 4: Simplify 4334\frac{4}{3} - \frac{3}{4}.

Find the common denominator:

43=1612,34=912\frac{4}{3} = \frac{16}{12}, \quad \frac{3}{4} = \frac{9}{12} 1612912=712\frac{16}{12} - \frac{9}{12} = \frac{7}{12}

Now the expression is:

127×712+57÷34×37\frac{12}{7} \times \frac{7}{12} + \frac{5}{7} \div \frac{3}{4} \times \frac{3}{7}

Step 5: Simplify 127×712\frac{12}{7} \times \frac{7}{12}.

127×712=1\frac{12}{7} \times \frac{7}{12} = 1

So, the expression now becomes:

1+57÷34×371 + \frac{5}{7} \div \frac{3}{4} \times \frac{3}{7}

Step 6: Simplify 57÷34\frac{5}{7} \div \frac{3}{4}.

57×43=2021\frac{5}{7} \times \frac{4}{3} = \frac{20}{21}

Now the expression is:

1+2021×371 + \frac{20}{21} \times \frac{3}{7}

Step 7: Simplify 2021×37\frac{20}{21} \times \frac{3}{7}.

2021×37=60147=2049\frac{20}{21} \times \frac{3}{7} = \frac{60}{147} = \frac{20}{49}

Step 8: Final step.

1+2049=4949+2049=69491 + \frac{20}{49} = \frac{49}{49} + \frac{20}{49} = \frac{69}{49}

So, the simplified form of the given expression is:

6949\frac{69}{49}

Do you have any questions, or would you like further details?

5 Related Questions:

  1. How do you convert a mixed number into an improper fraction?
  2. How do you simplify complex fractions step by step?
  3. What are the rules for dividing and multiplying fractions?
  4. How do you find a common denominator for subtracting fractions?
  5. How can you check your work when simplifying expressions involving fractions?

Tip:

When working with fractions, always remember to simplify at each step to avoid handling large numbers later on.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fractions
Mixed Numbers
Division and Multiplication of Fractions
Common Denominators
Simplification

Formulas

Mixed number to improper fraction: \( a \frac{b}{c} = \frac{ac + b}{c} \)
Division of fractions: \( \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} \)
Addition/subtraction with a common denominator

Theorems

Basic Fraction Operations

Suitable Grade Level

Grades 7-9