Math Problem Statement

\int _1^5\int _1^2\left(\frac{\ln \left(y\right)}{xy}\right)dydx

Solution

To solve the double integral:

1512(ln(y)xy)dydx\int _1^5\int _1^2\left(\frac{\ln \left(y\right)}{xy}\right)dydx

we will follow these steps:

Step 1: Separate the Integrals

Notice that the integrand can be written as:

ln(y)xy=1xln(y)y\frac{\ln(y)}{xy} = \frac{1}{x} \cdot \frac{\ln(y)}{y}

Thus, the integral becomes:

151x12ln(y)ydydx\int_1^5 \frac{1}{x} \int_1^2 \frac{\ln(y)}{y} \, dy \, dx

Step 2: Evaluate the Inner Integral

First, compute the inner integral:

12ln(y)ydy\int_1^2 \frac{\ln(y)}{y} \, dy

This integral is a standard one and can be solved using substitution:

ln(y)ydy=12(ln(y))2+C\int \frac{\ln(y)}{y} \, dy = \frac{1}{2}(\ln(y))^2 + C

Applying the limits from 1 to 2:

12ln(y)ydy=12(ln(2))212(ln(1))2\int_1^2 \frac{\ln(y)}{y} \, dy = \frac{1}{2}(\ln(2))^2 - \frac{1}{2}(\ln(1))^2

Since ln(1)=0\ln(1) = 0, this simplifies to:

12ln(y)ydy=12(ln(2))2\int_1^2 \frac{\ln(y)}{y} \, dy = \frac{1}{2}(\ln(2))^2

Let I=12(ln(2))2I = \frac{1}{2}(\ln(2))^2.

Step 3: Evaluate the Outer Integral

Now, the integral becomes:

I151xdxI \int_1^5 \frac{1}{x} \, dx

The integral 151xdx\int_1^5 \frac{1}{x} \, dx is:

151xdx=ln(5)ln(1)=ln(5)\int_1^5 \frac{1}{x} \, dx = \ln(5) - \ln(1) = \ln(5)

Step 4: Multiply the Results

Now, multiply the results of the two integrals:

1512ln(y)xydydx=12(ln(2))2ln(5)\int_1^5\int_1^2 \frac{\ln(y)}{xy} \, dy \, dx = \frac{1}{2}(\ln(2))^2 \cdot \ln(5)

Thus, the final answer is:

12(ln(2))2ln(5)\boxed{\frac{1}{2}(\ln(2))^2 \ln(5)}

Would you like more details or have any questions?

Related Questions:

  1. How do you solve double integrals involving exponential functions?
  2. What are the applications of double integrals in physics?
  3. Can double integrals be solved using polar coordinates? When is it beneficial?
  4. What substitution methods are useful in solving double integrals?
  5. How do you interpret the result of a double integral in terms of area or volume?

Tip:

Always look for ways to simplify the integrand before integrating, such as factoring out constants or using substitutions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double Integrals
Logarithmic Functions
Calculus

Formulas

\int \frac{\ln(y)}{y} dy = \frac{1}{2}(\ln(y))^2
\int \frac{1}{x} dx = \ln(x)

Theorems

Fundamental Theorem of Calculus
Integration by Parts (Logarithmic Integration)

Suitable Grade Level

Undergraduate Level (Calculus II)