Math Problem Statement

Evaluate the iterated integral \( \int_0^{\ln 5} \int_1^{\ln 2} e^{2x + 3y} \, dy \, dx \) and select the correct answer from the options.

Solution

The given problem asks for the evaluation of the iterated integral:

0ln51ln2e2x+3ydydx.\int_0^{\ln 5} \int_1^{\ln 2} e^{2x + 3y} \, dy \, dx.

Let’s solve this step by step.


Step 1: Separate the exponential term

The expression e2x+3ye^{2x + 3y} can be written as the product of two independent terms: e2x+3y=e2xe3y.e^{2x + 3y} = e^{2x} \cdot e^{3y}.

This allows us to separate the variables when integrating.


Step 2: Inner integral (with respect to yy)

We evaluate: 1ln2e3ydy.\int_1^{\ln 2} e^{3y} \, dy.

The integral of e3ye^{3y} is: e3y3.\frac{e^{3y}}{3}.

Apply the limits y=1y = 1 to y=ln2y = \ln 2: [e3y3]1ln2=e3ln23e313.\left[ \frac{e^{3y}}{3} \right]_1^{\ln 2} = \frac{e^{3 \ln 2}}{3} - \frac{e^{3 \cdot 1}}{3}.

Since e3ln2=(eln2)3=23=8e^{3 \ln 2} = (e^{\ln 2})^3 = 2^3 = 8, this becomes: 83e33=8e33.\frac{8}{3} - \frac{e^3}{3} = \frac{8 - e^3}{3}.


Step 3: Outer integral (with respect to xx)

The outer integral now becomes: 0ln5e2x8e33dx.\int_0^{\ln 5} e^{2x} \cdot \frac{8 - e^3}{3} \, dx.

Since 8e33\frac{8 - e^3}{3} is a constant with respect to xx, we factor it out: 8e330ln5e2xdx.\frac{8 - e^3}{3} \int_0^{\ln 5} e^{2x} \, dx.


Step 4: Solve the remaining integral

The integral of e2xe^{2x} is: e2x2.\frac{e^{2x}}{2}.

Apply the limits x=0x = 0 to x=ln5x = \ln 5: [e2x2]0ln5=e2ln52e202.\left[ \frac{e^{2x}}{2} \right]_0^{\ln 5} = \frac{e^{2 \ln 5}}{2} - \frac{e^{2 \cdot 0}}{2}.

Since e2ln5=(eln5)2=52=25e^{2 \ln 5} = (e^{\ln 5})^2 = 5^2 = 25 and e0=1e^0 = 1, this becomes: 25212=242=12.\frac{25}{2} - \frac{1}{2} = \frac{24}{2} = 12.


Step 5: Combine results

The final result is: 8e3312=4(8e3).\frac{8 - e^3}{3} \cdot 12 = 4(8 - e^3).


Final Answer:

The correct choice is: a. 4(8e3).\textbf{a. } 4(8 - e^3).

Let me know if you'd like a more detailed explanation!


Related Questions:

  1. How does separation of exponential terms work in integrals?
  2. Can this problem be solved with reversed integration limits?
  3. Why does the constant factor 8e33\frac{8 - e^3}{3} simplify the problem?
  4. What is the significance of using iterated integrals instead of double integrals?
  5. How would the answer change if e2x+3ye^{2x + 3y} was replaced by e2x3ye^{2x - 3y}?

Tip:

Always check whether you can separate variables in an exponential function—it often simplifies multivariable integrals significantly!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Iterated Integrals
Exponential Functions

Formulas

Integral of e^(kx) is e^(kx)/k
Properties of exponents: e^(a+b) = e^a * e^b

Theorems

Fubini's Theorem for iterated integrals

Suitable Grade Level

University Level (Calculus II or III)