Math Problem Statement

jelaskan penyelesaian integral iterasi ini

jelaskan penyelesaian integral iterasi ini

Solution

To solve the given iterated integral, let's analyze the expression in detail.

The iterated integral is:

1412(xy+yx)dxdy\int_{1}^{4} \int_{1}^{2} \left( \frac{x}{y} + \frac{y}{x} \right) \, dx \, dy

This integral can be solved by following these steps:

Step 1: Separate the Inner Integral

Rewrite the integral by separating the terms inside the integrand:

1412(xy+yx)dxdy=1412xydxdy+1412yxdxdy\int_{1}^{4} \int_{1}^{2} \left( \frac{x}{y} + \frac{y}{x} \right) \, dx \, dy = \int_{1}^{4} \int_{1}^{2} \frac{x}{y} \, dx \, dy + \int_{1}^{4} \int_{1}^{2} \frac{y}{x} \, dx \, dy

Step 2: Solve Each Inner Integral Separately

We will solve each part of the integral separately.

Part 1: Compute 12xydx\int_{1}^{2} \frac{x}{y} \, dx

Since xy\frac{x}{y} does not depend on yy (it treats yy as a constant with respect to xx), we can take 1y\frac{1}{y} outside the inner integral:

1412xydxdy=141y(12xdx)dy\int_{1}^{4} \int_{1}^{2} \frac{x}{y} \, dx \, dy = \int_{1}^{4} \frac{1}{y} \left( \int_{1}^{2} x \, dx \right) dy

Now, solve the inner integral 12xdx\int_{1}^{2} x \, dx:

12xdx=[x22]12=222122=4212=32\int_{1}^{2} x \, dx = \left[ \frac{x^2}{2} \right]_{1}^{2} = \frac{2^2}{2} - \frac{1^2}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2}

Substitute back:

141y32dy=32141ydy\int_{1}^{4} \frac{1}{y} \cdot \frac{3}{2} \, dy = \frac{3}{2} \int_{1}^{4} \frac{1}{y} \, dy

Now, integrate with respect to yy:

32141ydy=32[lny]14=32(ln4ln1)=32ln4\frac{3}{2} \int_{1}^{4} \frac{1}{y} \, dy = \frac{3}{2} \left[ \ln y \right]_{1}^{4} = \frac{3}{2} (\ln 4 - \ln 1) = \frac{3}{2} \ln 4

Since ln1=0\ln 1 = 0, we have:

32ln4\frac{3}{2} \ln 4

Part 2: Compute 12yxdx\int_{1}^{2} \frac{y}{x} \, dx

Similarly, treat yx\frac{y}{x} as a constant with respect to yy and take yy outside the inner integral:

1412yxdxdy=14y(121xdx)dy\int_{1}^{4} \int_{1}^{2} \frac{y}{x} \, dx \, dy = \int_{1}^{4} y \left( \int_{1}^{2} \frac{1}{x} \, dx \right) dy

Now, solve the inner integral 121xdx\int_{1}^{2} \frac{1}{x} \, dx:

121xdx=[lnx]12=ln2ln1=ln2\int_{1}^{2} \frac{1}{x} \, dx = \left[ \ln x \right]_{1}^{2} = \ln 2 - \ln 1 = \ln 2

Substitute back:

14yln2dy=ln214ydy\int_{1}^{4} y \cdot \ln 2 \, dy = \ln 2 \int_{1}^{4} y \, dy

Now, integrate with respect to yy:

ln214ydy=ln2[y22]14=ln2(422122)\ln 2 \int_{1}^{4} y \, dy = \ln 2 \left[ \frac{y^2}{2} \right]_{1}^{4} = \ln 2 \left( \frac{4^2}{2} - \frac{1^2}{2} \right)

Calculate each term:

=ln2(16212)=ln2152=152ln2= \ln 2 \left( \frac{16}{2} - \frac{1}{2} \right) = \ln 2 \cdot \frac{15}{2} = \frac{15}{2} \ln 2

Step 3: Combine the Results

Add the results from both parts:

1412(xy+yx)dxdy=32ln4+152ln2\int_{1}^{4} \int_{1}^{2} \left( \frac{x}{y} + \frac{y}{x} \right) \, dx \, dy = \frac{3}{2} \ln 4 + \frac{15}{2} \ln 2

Since ln4=2ln2\ln 4 = 2 \ln 2, substitute ln4\ln 4 to simplify further:

=322ln2+152ln2=62ln2+152ln2=212ln2= \frac{3}{2} \cdot 2 \ln 2 + \frac{15}{2} \ln 2 = \frac{6}{2} \ln 2 + \frac{15}{2} \ln 2 = \frac{21}{2} \ln 2

Final Answer

1412(xy+yx)dxdy=212ln2\int_{1}^{4} \int_{1}^{2} \left( \frac{x}{y} + \frac{y}{x} \right) \, dx \, dy = \frac{21}{2} \ln 2

Would you like further details on any specific part?

Related Questions

  1. How do you apply the Fubini’s theorem to evaluate double integrals?
  2. Can iterated integrals be solved by reversing the order of integration?
  3. How does the choice of order in integration affect the complexity of double integrals?
  4. What are the conditions for separating integrals when the integrand has multiple terms?
  5. How would this integral change if the bounds were reversed?

Tip

When dealing with iterated integrals, check if you can simplify by separating terms or factoring out constants to make the integration manageable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Iterated Integrals
Double Integration
Logarithmic Functions

Formulas

∫∫ f(x,y) dx dy for double integration
Logarithmic properties: ln(a/b) = ln(a) - ln(b)

Theorems

Fundamental Theorem of Calculus
Properties of Definite Integrals

Suitable Grade Level

Undergraduate Calculus