Math Problem Statement

Solve this question step by step

Solve by the method of variation of parameters: y'' + 6y' + 9y = x^(-3)e^(-3x), x > 0.

Solution

To solve the given differential equation using the method of variation of parameters, let us proceed step-by-step:

The Differential Equation

y+6y+9y=x3e3x,x>0.y'' + 6y' + 9y = x^{-3}e^{-3x}, \quad x > 0.

Step 1: Solve the Homogeneous Equation

The homogeneous equation is: y+6y+9y=0.y'' + 6y' + 9y = 0.

This is a second-order linear differential equation. The characteristic equation is: r2+6r+9=0.r^2 + 6r + 9 = 0.

Factoring: (r+3)2=0.(r + 3)^2 = 0.

Thus, the roots are: r=3(repeated root).r = -3 \quad \text{(repeated root)}.

The general solution to the homogeneous equation is: yh=c1e3x+c2xe3x.y_h = c_1e^{-3x} + c_2xe^{-3x}.

Step 2: Apply Variation of Parameters

The particular solution ypy_p is found using the variation of parameters method. Assume: yp=u1(x)e3x+u2(x)xe3x.y_p = u_1(x)e^{-3x} + u_2(x)xe^{-3x}.

Here, u1(x)u_1(x) and u2(x)u_2(x) are functions to be determined.

Step 2.1: Derivatives of ypy_p

yp=u1(x)e3x+u1(x)(3e3x)+u2(x)xe3x+u2(x)(e3x3xe3x),y_p' = u_1'(x)e^{-3x} + u_1(x)(-3e^{-3x}) + u_2'(x)xe^{-3x} + u_2(x)(e^{-3x} - 3xe^{-3x}), yp=(u1e3x+u2xe3x)3(u1e3x+u2xe3x),y_p' = (u_1'e^{-3x} + u_2'xe^{-3x}) - 3(u_1e^{-3x} + u_2xe^{-3x}), yp=u1e3x+u2xe3x3yp.y_p' = u_1'e^{-3x} + u_2'xe^{-3x} - 3y_p.

The second derivative is: yp=u1e3x+u1(3e3x)+u2xe3x+u2(e3x3xe3x)3(u1e3x+u2xe3x3yp).y_p'' = u_1''e^{-3x} + u_1'(-3e^{-3x}) + u_2''xe^{-3x} + u_2'(e^{-3x} - 3xe^{-3x}) - 3(u_1'e^{-3x} + u_2'xe^{-3x} - 3y_p).

Step 2.2: Simplify Equations

To simplify computation, we enforce the following condition: u1e3x+u2xe3x=0.u_1'e^{-3x} + u_2'xe^{-3x} = 0.

This simplifies the first derivative to: yp=3(u1e3x+u2xe3x).y_p' = -3(u_1e^{-3x} + u_2xe^{-3x}).

Substitute into the original equation: yp+6yp+9yp=x3e3x.y_p'' + 6y_p' + 9y_p = x^{-3}e^{-3x}.

After simplifications, the equations for u1u_1' and u2u_2' become: u1(x)e3x+u2(x)xe3x=0,(1)u_1'(x)e^{-3x} + u_2'(x)xe^{-3x} = 0, \quad \text{(1)} 3u1(x)e3x3u2(x)xe3x=x3e3x.(2)-3u_1'(x)e^{-3x} - 3u_2'(x)xe^{-3x} = x^{-3}e^{-3x}. \quad \text{(2)}

Step 2.3: Solve for u1u_1' and u2u_2'

From equation (1): u1(x)+u2(x)x=0    u1(x)=u2(x)x.u_1'(x) + u_2'(x)x = 0 \implies u_1'(x) = -u_2'(x)x.

Substitute u1(x)=u2(x)xu_1'(x) = -u_2'(x)x into equation (2): 3(u2(x)x)e3x3u2(x)xe3x=x3e3x.-3(-u_2'(x)x)e^{-3x} - 3u_2'(x)xe^{-3x} = x^{-3}e^{-3x}. 3u2(x)xe3x3u2(x)xe3x=x3e3x.3u_2'(x)xe^{-3x} - 3u_2'(x)xe^{-3x} = x^{-3}e^{-3x}. u2(x)=x3.u_2'(x) = x^{-3}.

Now substitute u2(x)u_2'(x) into u1(x)=u2(x)xu_1'(x) = -u_2'(x)x: u1(x)=x3x=x2.u_1'(x) = -x^{-3}x = -x^{-2}.

Step 2.4: Integrate for u1(x)u_1(x) and u2(x)u_2(x)

u2(x)=x3dx=12x2.u_2(x) = \int x^{-3} dx = -\frac{1}{2}x^{-2}. u1(x)=x2dx=x1.u_1(x) = \int -x^{-2} dx = x^{-1}.

Step 3: Write the Particular Solution

Substitute u1(x)u_1(x) and u2(x)u_2(x) into ypy_p: yp=u1(x)e3x+u2(x)xe3x,y_p = u_1(x)e^{-3x} + u_2(x)xe^{-3x}, yp=x1e3x12x2xe3x.y_p = x^{-1}e^{-3x} - \frac{1}{2}x^{-2}xe^{-3x}. yp=x1e3x12x1e3x.y_p = x^{-1}e^{-3x} - \frac{1}{2}x^{-1}e^{-3x}. yp=12x1e3x.y_p = \frac{1}{2}x^{-1}e^{-3x}.

Step 4: General Solution

The general solution is: y=yh+yp,y = y_h + y_p, y=c1e3x+c2xe3x+12x1e3x.y = c_1e^{-3x} + c_2xe^{-3x} + \frac{1}{2}x^{-1}e^{-3x}.

This is the required solution.

Would you like further explanation on any step or related concepts?

Related Questions:

  1. How does the method of variation of parameters differ from undetermined coefficients?
  2. Can you explain why we use u1e3x+u2xe3x=0u_1'e^{-3x} + u_2'xe^{-3x} = 0 as a simplifying assumption?
  3. How would the solution change if the forcing term was e3xe^{-3x} instead of x3e3xx^{-3}e^{-3x}?
  4. Why do repeated roots in the characteristic equation result in solutions involving xx?
  5. What are the limitations of variation of parameters in solving differential equations?

Tip:

Always simplify intermediate derivatives when using variation of parameters to reduce algebraic complexity!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differential Equations
Variation of Parameters
Homogeneous and Non-Homogeneous Equations

Formulas

Characteristic equation: r^2 + 6r + 9 = 0
General solution: y_h = c1e^(-3x) + c2xe^(-3x)
Particular solution structure: y_p = u1(x)e^(-3x) + u2(x)xe^(-3x)

Theorems

Method of Variation of Parameters

Suitable Grade Level

Undergraduate Mathematics