Math Problem Statement

resolver por variación de parámetro

resolver por variación de parámetro

Solution

The given differential equation is:

y+9y=sin(3x)y'' + 9y = \sin(3x)

We are tasked with solving this using the method of variation of parameters.

Step 1: Solve the homogeneous equation

First, solve the homogeneous part of the equation:

y+9y=0y'' + 9y = 0

The characteristic equation for this is:

r2+9=0r^2 + 9 = 0

This gives:

r=±3ir = \pm 3i

Thus, the general solution to the homogeneous equation is:

yh(x)=c1cos(3x)+c2sin(3x)y_h(x) = c_1 \cos(3x) + c_2 \sin(3x)

Step 2: Particular solution using variation of parameters

The particular solution, yp(x)y_p(x), is found by assuming it has the form:

yp(x)=u1(x)cos(3x)+u2(x)sin(3x)y_p(x) = u_1(x) \cos(3x) + u_2(x) \sin(3x)

where u1(x)u_1(x) and u2(x)u_2(x) are functions to be determined.

We need to compute u1(x)u_1(x) and u2(x)u_2(x) using the following formulas derived from the method of variation of parameters:

u1(x)=y2(x)g(x)W(y1,y2)u_1'(x) = \frac{-y_2(x) g(x)}{W(y_1, y_2)}

u2(x)=y1(x)g(x)W(y1,y2)u_2'(x) = \frac{y_1(x) g(x)}{W(y_1, y_2)}

where:

  • y1(x)=cos(3x)y_1(x) = \cos(3x),
  • y2(x)=sin(3x)y_2(x) = \sin(3x),
  • g(x)=sin(3x)g(x) = \sin(3x) is the non-homogeneous term, and
  • W(y1,y2)W(y_1, y_2) is the Wronskian of y1y_1 and y2y_2.

Step 3: Calculate the Wronskian

The Wronskian is given by:

W(y1,y2)=y1(x)y2(x)y1(x)y2(x)W(y_1, y_2) = y_1(x) y_2'(x) - y_1'(x) y_2(x)

We know that:

  • y1(x)=cos(3x)y_1(x) = \cos(3x),
  • y1(x)=3sin(3x)y_1'(x) = -3 \sin(3x),
  • y2(x)=sin(3x)y_2(x) = \sin(3x),
  • y2(x)=3cos(3x)y_2'(x) = 3 \cos(3x).

Thus,

W(y1,y2)=cos(3x)3cos(3x)(3sin(3x))sin(3x)=3[cos2(3x)+sin2(3x)]=3W(y_1, y_2) = \cos(3x) \cdot 3 \cos(3x) - (-3 \sin(3x)) \cdot \sin(3x) = 3[\cos^2(3x) + \sin^2(3x)] = 3

Step 4: Compute u1(x)u_1'(x) and u2(x)u_2'(x)

Using the formulas for u1u_1' and u2u_2':

u1(x)=sin(3x)sin(3x)3=sin2(3x)3u_1'(x) = \frac{-\sin(3x) \cdot \sin(3x)}{3} = \frac{-\sin^2(3x)}{3}

u2(x)=cos(3x)sin(3x)3=sin(3x)cos(3x)3u_2'(x) = \frac{\cos(3x) \cdot \sin(3x)}{3} = \frac{\sin(3x) \cos(3x)}{3}

Step 5: Integrate to find u1(x)u_1(x) and u2(x)u_2(x)

Now integrate u1(x)u_1'(x) and u2(x)u_2'(x):

u1(x)=sin2(3x)3dxu_1(x) = \int \frac{-\sin^2(3x)}{3} dx

Using the identity sin2(3x)=1cos(6x)2\sin^2(3x) = \frac{1 - \cos(6x)}{2}, we get:

u1(x)=1+cos(6x)6dx=x6+sin(6x)36u_1(x) = \int \frac{-1 + \cos(6x)}{6} dx = \frac{-x}{6} + \frac{\sin(6x)}{36}

Next,

u2(x)=sin(3x)cos(3x)3dxu_2(x) = \int \frac{\sin(3x) \cos(3x)}{3} dx

Using the identity sin(3x)cos(3x)=12sin(6x)\sin(3x) \cos(3x) = \frac{1}{2} \sin(6x), we get:

u2(x)=16sin(6x)dx=cos(6x)36u_2(x) = \int \frac{1}{6} \sin(6x) dx = \frac{-\cos(6x)}{36}

Step 6: Form the particular solution

Now, substitute u1(x)u_1(x) and u2(x)u_2(x) into the expression for yp(x)y_p(x):

yp(x)=(x6+sin(6x)36)cos(3x)+(cos(6x)36)sin(3x)y_p(x) = \left(\frac{-x}{6} + \frac{\sin(6x)}{36}\right) \cos(3x) + \left(\frac{-\cos(6x)}{36}\right) \sin(3x)

Final Solution

The general solution to the differential equation is the sum of the homogeneous and particular solutions:

y(x)=yh(x)+yp(x)y(x) = y_h(x) + y_p(x)

y(x)=c1cos(3x)+c2sin(3x)+(x6+sin(6x)36)cos(3x)+(cos(6x)36)sin(3x)y(x) = c_1 \cos(3x) + c_2 \sin(3x) + \left(\frac{-x}{6} + \frac{\sin(6x)}{36}\right) \cos(3x) + \left(\frac{-\cos(6x)}{36}\right) \sin(3x)

This is the complete solution to the equation.

Would you like more details on any step? Here are some related questions:

  1. What is the variation of parameters method used for in differential equations?
  2. Can we apply the method of undetermined coefficients to this equation?
  3. How do you calculate the Wronskian for different functions?
  4. What other methods exist to solve non-homogeneous differential equations?
  5. How do trigonometric identities help simplify integrals like sin2(x)\sin^2(x)?

Tip: Always check if a simpler method (e.g., undetermined coefficients) can solve the equation before applying variation of parameters!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differential Equations
Second-Order ODE
Non-homogeneous Equations

Formulas

y'' + 9y = sen(3x)
General solution to homogeneous equation: y_h(x) = c_1 cos(3x) + c_2 sin(3x)
Particular solution form using variation of parameters: y_p(x) = u_1(x) cos(3x) + u_2(x) sin(3x)
Wronskian: W(y_1, y_2) = y_1(x) y_2'(x) - y_1'(x) y_2(x)

Theorems

Variation of Parameters
Trigonometric Identities
Wronskian Determinant

Suitable Grade Level

University Level (Undergraduate Mathematics)