Math Problem Statement

first equation is (VIL -VT)^2/2 = [(VDD - VIL - VT) (VDD - VOUT) - (VDD - VOUT)^2/2] second equation is VOUT = VIL + VDD/2 now substitute second equation in first equation and give me resultant VIL equation

Solution

Let's begin by substituting the second equation, VOUT=VIL+VDD2V_{\text{OUT}} = V_{\text{IL}} + \frac{V_{\text{DD}}}{2}, into the first equation and then solving for VILV_{\text{IL}}.

Step 1: First Equation

(VILVT)2/2=[(VDDVILVT)(VDDVOUT)(VDDVOUT)22](V_{\text{IL}} - V_{\text{T}})^2 / 2 = \left[ (V_{\text{DD}} - V_{\text{IL}} - V_{\text{T}}) (V_{\text{DD}} - V_{\text{OUT}}) - \frac{(V_{\text{DD}} - V_{\text{OUT}})^2}{2} \right]

Step 2: Substitute VOUT=VIL+VDD2V_{\text{OUT}} = V_{\text{IL}} + \frac{V_{\text{DD}}}{2}

Now, substitute this into the equation: (VILVT)2/2=[(VDDVILVT)(VDD(VIL+VDD2))(VDD(VIL+VDD2))22](V_{\text{IL}} - V_{\text{T}})^2 / 2 = \left[ (V_{\text{DD}} - V_{\text{IL}} - V_{\text{T}}) \left( V_{\text{DD}} - \left( V_{\text{IL}} + \frac{V_{\text{DD}}}{2} \right) \right) - \frac{\left( V_{\text{DD}} - \left( V_{\text{IL}} + \frac{V_{\text{DD}}}{2} \right) \right)^2}{2} \right]

Step 3: Simplify VDDVOUTV_{\text{DD}} - V_{\text{OUT}}

Simplifying VDDVOUTV_{\text{DD}} - V_{\text{OUT}} using VOUT=VIL+VDD2V_{\text{OUT}} = V_{\text{IL}} + \frac{V_{\text{DD}}}{2}, we get: VDDVOUT=VDD(VIL+VDD2)=VDD2VILV_{\text{DD}} - V_{\text{OUT}} = V_{\text{DD}} - \left( V_{\text{IL}} + \frac{V_{\text{DD}}}{2} \right) = \frac{V_{\text{DD}}}{2} - V_{\text{IL}}

Step 4: Substitute into the Equation

Now substitute this into the original equation: (VILVT)2/2=[(VDDVILVT)(VDD2VIL)(VDD2VIL)22](V_{\text{IL}} - V_{\text{T}})^2 / 2 = \left[ (V_{\text{DD}} - V_{\text{IL}} - V_{\text{T}}) \left( \frac{V_{\text{DD}}}{2} - V_{\text{IL}} \right) - \frac{\left( \frac{V_{\text{DD}}}{2} - V_{\text{IL}} \right)^2}{2} \right]

Step 5: Expand and Simplify

Now expand the terms and simplify the equation to isolate VILV_{\text{IL}}. After expanding both sides, collect terms of VILV_{\text{IL}} and solve.

Let me handle this algebraic expansion to get the resultant equation.The solution for VILV_{\text{IL}} after substituting the second equation into the first is:

VIL=3VDD8+VT4V_{\text{IL}} = \frac{3V_{\text{DD}}}{8} + \frac{V_{\text{T}}}{4}

Would you like a detailed breakdown of the steps involved in solving this, or do you have any other questions?

Here are 5 related questions:

  1. How does the threshold voltage VTV_T affect the value of VILV_{\text{IL}}?
  2. What physical meaning does VILV_{\text{IL}} represent in this context?
  3. How would the equation change if the source voltage VDDV_{\text{DD}} were increased?
  4. Can you derive the relationship between VOUTV_{\text{OUT}} and VTV_T using these equations?
  5. How does this result apply to transistor behavior in digital circuits?

Tip: Expanding and simplifying equations early on can save a lot of time when solving for variables.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Substitution
Quadratic Equations

Formulas

(VIL - VT)^2 / 2 = [(VDD - VIL - VT)(VDD - VOUT) - (VDD - VOUT)^2 / 2]
VOUT = VIL + VDD / 2
VIL = (3VDD / 8) + (VT / 4)

Theorems

Algebraic Substitution
Quadratic Expansion

Suitable Grade Level

College Level - Engineering or Advanced Physics