Math Problem Statement

3\sqrt{125} $$$$ - $$$$ 4\sqrt{12}+3\sqrt{48}

Solution

Let's simplify each term individually and then combine them:

Step 1: Simplify 31253\sqrt{125}

  1. Break down 125\sqrt{125}: 125=255=255=55\sqrt{125} = \sqrt{25 \cdot 5} = \sqrt{25} \cdot \sqrt{5} = 5\sqrt{5}
  2. Substitute back: 3125=355=1553\sqrt{125} = 3 \cdot 5\sqrt{5} = 15\sqrt{5}

Step 2: Simplify 4124\sqrt{12}

  1. Break down 12\sqrt{12}: 12=43=43=23\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}
  2. Substitute back: 412=423=834\sqrt{12} = 4 \cdot 2\sqrt{3} = 8\sqrt{3}

Step 3: Simplify 3483\sqrt{48}

  1. Break down 48\sqrt{48}: 48=163=163=43\sqrt{48} = \sqrt{16 \cdot 3} = \sqrt{16} \cdot \sqrt{3} = 4\sqrt{3}
  2. Substitute back: 348=343=1233\sqrt{48} = 3 \cdot 4\sqrt{3} = 12\sqrt{3}

Step 4: Combine all terms

Now we have: 15583+12315\sqrt{5} - 8\sqrt{3} + 12\sqrt{3} Combine the terms with 3\sqrt{3}: =155+(128)3=155+43= 15\sqrt{5} + (12 - 8)\sqrt{3} = 15\sqrt{5} + 4\sqrt{3}

Final Answer

155+4315\sqrt{5} + 4\sqrt{3}

Would you like more details on any step or have any questions?

Here are 5 related questions to expand on this:

  1. How do we simplify square roots of other non-perfect square numbers?
  2. Can we add square root terms if they have different numbers under the square root?
  3. What is the difference between simplifying square roots and rationalizing them?
  4. How can this process be applied to roots of higher powers, like cube roots?
  5. Why is it beneficial to break down the square root terms before combining?

Tip: Always look for perfect square factors to simplify square roots easily!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplification of Square Roots
Algebra

Formulas

√a * √b = √(a*b)
a√b + c√b = (a + c)√b

Theorems

Square Root Properties

Suitable Grade Level

Grades 6-8