Math Problem Statement

Simplify the given square root expressions, including terms such as 4√48 + 3√147 - 5√12 and others.

Solution

Let's go ahead and simplify the given square root expressions step by step.

(a) 448+31475124\sqrt{48} + 3\sqrt{147} - 5\sqrt{12}

We first simplify each square root:

  • 48=16×3=43\sqrt{48} = \sqrt{16 \times 3} = 4\sqrt{3}
  • 147=49×3=73\sqrt{147} = \sqrt{49 \times 3} = 7\sqrt{3}
  • 12=4×3=23\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}

Now substitute these into the expression: 4(43)+3(73)5(23)=163+2131034(4\sqrt{3}) + 3(7\sqrt{3}) - 5(2\sqrt{3}) = 16\sqrt{3} + 21\sqrt{3} - 10\sqrt{3} Simplifying the terms: 163+213103=27316\sqrt{3} + 21\sqrt{3} - 10\sqrt{3} = 27\sqrt{3}

(b) 282\sqrt{2} - 8\sqrt{2}

Combine the like terms: 282=72\sqrt{2} - 8\sqrt{2} = -7\sqrt{2}

(c) 832\sqrt{8} - 3\sqrt{2}

First, simplify 8\sqrt{8}: 8=4×2=22\sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2} Now substitute and combine the terms: 2232=22\sqrt{2} - 3\sqrt{2} = -\sqrt{2}

(d) 5032\sqrt{50} - \sqrt{32}

Simplify each square root:

  • 50=25×2=52\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}
  • 32=16×2=42\sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}

Now subtract: 5242=25\sqrt{2} - 4\sqrt{2} = \sqrt{2}

(e) 90540210\sqrt{90} - 5\sqrt{40} - 2\sqrt{10}

Simplify each square root:

  • 90=9×10=310\sqrt{90} = \sqrt{9 \times 10} = 3\sqrt{10}
  • 40=4×10=210\sqrt{40} = \sqrt{4 \times 10} = 2\sqrt{10}

Substitute into the expression: 3105(210)210=31010102103\sqrt{10} - 5(2\sqrt{10}) - 2\sqrt{10} = 3\sqrt{10} - 10\sqrt{10} - 2\sqrt{10} Combine like terms: 3101010210=9103\sqrt{10} - 10\sqrt{10} - 2\sqrt{10} = -9\sqrt{10}

(f) 22238\sqrt{2} - 2\sqrt{2} - 3\sqrt{8}

First simplify 8\sqrt{8}: 8=22\sqrt{8} = 2\sqrt{2} Now substitute and combine: 2223(22)=22262\sqrt{2} - 2\sqrt{2} - 3(2\sqrt{2}) = \sqrt{2} - 2\sqrt{2} - 6\sqrt{2} 22262=72\sqrt{2} - 2\sqrt{2} - 6\sqrt{2} = -7\sqrt{2}

(g) 25+452\sqrt{5} + \sqrt{45}

Simplify 45\sqrt{45}: 45=9×5=35\sqrt{45} = \sqrt{9 \times 5} = 3\sqrt{5} Now substitute and combine the terms: 25+35=552\sqrt{5} + 3\sqrt{5} = 5\sqrt{5}

(h) 5+45+3125\sqrt{5} + 4\sqrt{5} + 3\sqrt{125}

Simplify 125\sqrt{125}: 125=25×5=55\sqrt{125} = \sqrt{25 \times 5} = 5\sqrt{5} Now substitute and combine: 5+45+3(55)=5+45+155\sqrt{5} + 4\sqrt{5} + 3(5\sqrt{5}) = \sqrt{5} + 4\sqrt{5} + 15\sqrt{5} 5+45+155=205\sqrt{5} + 4\sqrt{5} + 15\sqrt{5} = 20\sqrt{5}

(i) 1227\sqrt{12} - \sqrt{27}

Simplify both square roots:

  • 12=4×3=23\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}
  • 27=9×3=33\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}

Now subtract: 2333=32\sqrt{3} - 3\sqrt{3} = -\sqrt{3}

(j) 23482\sqrt{3} - \sqrt{48}

Simplify 48\sqrt{48}: 48=16×3=43\sqrt{48} = \sqrt{16 \times 3} = 4\sqrt{3} Now substitute and subtract: 2343=232\sqrt{3} - 4\sqrt{3} = -2\sqrt{3}


Do you have any questions or would you like further clarification?

Here are 5 related questions you might explore:

  1. How do you simplify square roots with non-perfect square factors?
  2. What is the process for combining like terms with square roots?
  3. How can you simplify expressions with cube roots or higher-order roots?
  4. What are the key properties of radicals that help in simplification?
  5. How do you rationalize the denominator when dealing with square roots?

Tip: Always try to break square roots into their prime factorization to simplify them easily!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplifying Square Roots
Algebraic Expressions
Radicals

Formulas

√a * b = √a * √b
Simplifying radicals using factorization
Combining like terms

Theorems

Square Root Property
Radical Simplification Rules

Suitable Grade Level

Grades 9-11