Math Problem Statement

Simplify the following rational expressions: 1) (129 / 25) * (1 / 50) 2) (3y + 9) / 2 * 4 / (6 - 3y) 3) (z^2 - 32 - 10) / (z^2 + 5z + 6) * (z^2 - 4) / (z^2 - 8z + 15) 4) (b^3 + 27) / (6b + 30) * (3b^2 - 9b + 27) / (b^3 + 80b + 15)

Solution

Here are the simplified solutions for the rational expressions provided:


1. Simplify 12925150\frac{129}{25} \cdot \frac{1}{50}

12925150=1291250\frac{129}{25} \cdot \frac{1}{50} = \frac{129}{1250}

This fraction is already in its simplest form as the numerator and denominator have no common factors.

Final Answer: 1291250\frac{129}{1250}


2. Simplify 3y+92463y\frac{3y + 9}{2} \cdot \frac{4}{6 - 3y}

First, factorize 3y+93y + 9 and 63y6 - 3y:

3y+9=3(y+3),63y=3(2y)3y + 9 = 3(y + 3), \quad 6 - 3y = 3(2 - y)

The expression becomes:

3(y+3)243(2y)\frac{3(y + 3)}{2} \cdot \frac{4}{3(2 - y)}

Simplify by canceling common terms:

(y+3)242y\frac{(y + 3)}{2} \cdot \frac{4}{2 - y}

Note: 2y2 - y is equivalent to (y2)-(y - 2). Adjust the sign:

(y+3)24(y2)\frac{(y + 3)}{2} \cdot \frac{4}{-(y - 2)}

=4(y+3)2(y2)= \frac{4(y + 3)}{-2(y - 2)}

Simplify:

=2(y+3)(y2)= \frac{-2(y + 3)}{(y - 2)}

Final Answer: 2(y+3)y2\frac{-2(y + 3)}{y - 2}


3. Simplify z23210z2+5z+6z24z28z+15\frac{z^2 - 32 - 10}{z^2 + 5z + 6} \cdot \frac{z^2 - 4}{z^2 - 8z + 15}

Step 1: Factorize each part:

  • z23210=z242z^2 - 32 - 10 = z^2 - 42 (Does not factor further.)
  • z2+5z+6=(z+2)(z+3)z^2 + 5z + 6 = (z + 2)(z + 3)
  • z24=(z2)(z+2)z^2 - 4 = (z - 2)(z + 2) (Difference of squares)
  • z28z+15=(z3)(z5)z^2 - 8z + 15 = (z - 3)(z - 5)

The expression becomes:

z242(z+2)(z+3)(z2)(z+2)(z3)(z5)\frac{z^2 - 42}{(z + 2)(z + 3)} \cdot \frac{(z - 2)(z + 2)}{(z - 3)(z - 5)}

Step 2: Cancel common terms:

=(z242)(z2)(z+3)(z5)= \frac{(z^2 - 42)(z - 2)}{(z + 3)(z - 5)}

Final Answer: (z242)(z2)(z+3)(z5)\frac{(z^2 - 42)(z - 2)}{(z + 3)(z - 5)}


4. Simplify b3+276b+303b29b+27b3+80b+15\frac{b^3 + 27}{6b + 30} \cdot \frac{3b^2 - 9b + 27}{b^3 + 80b + 15}

Step 1: Factorize each part:

  • b3+27=(b+3)(b23b+9)b^3 + 27 = (b + 3)(b^2 - 3b + 9) (Sum of cubes)
  • 6b+30=6(b+5)6b + 30 = 6(b + 5)
  • 3b29b+27=3(b23b+9)3b^2 - 9b + 27 = 3(b^2 - 3b + 9)
  • b3+80b+15b^3 + 80b + 15 (Does not factor easily.)

The expression becomes:

(b+3)(b23b+9)6(b+5)3(b23b+9)b3+80b+15\frac{(b + 3)(b^2 - 3b + 9)}{6(b + 5)} \cdot \frac{3(b^2 - 3b + 9)}{b^3 + 80b + 15}

Step 2: Cancel common terms:

  • b23b+9b^2 - 3b + 9 appears in both numerator and denominator, so cancel it.

=(b+3)36(b+5)(b3+80b+15)= \frac{(b + 3) \cdot 3}{6(b + 5)(b^3 + 80b + 15)}

Simplify the constant terms:

=(b+3)2(b+5)(b3+80b+15)= \frac{(b + 3)}{2(b + 5)(b^3 + 80b + 15)}

Final Answer: b+32(b+5)(b3+80b+15)\frac{b + 3}{2(b + 5)(b^3 + 80b + 15)}


Let me know if you have questions about any step or want further clarification!


Expanding your understanding:

  1. How do you recognize and factor sum or difference of cubes?
  2. Why is it important to identify common terms when simplifying rational expressions?
  3. Can b3+80b+15b^3 + 80b + 15 be factorized further? How would you approach it?
  4. What are the restrictions on the variables in these expressions (denominator restrictions)?
  5. How can factoring help simplify complex rational expressions quickly?

Tip: Always check for restrictions on the domain by identifying when the denominator equals zero.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplifying rational expressions
Factoring polynomials
Multiplication of rational expressions

Formulas

Sum and difference of cubes: a^3 + b^3 = (a + b)(a^2 - ab + b^2), a^3 - b^3 = (a - b)(a^2 + ab + b^2)
Difference of squares: a^2 - b^2 = (a - b)(a + b)

Theorems

Fundamental theorem of algebra (factoring polynomials)
Properties of fractions and rational expressions

Suitable Grade Level

Grades 9-12