Math Problem Statement

Simplify the following: (1) \( \frac{2x + 1}{2} - \frac{3x - 7}{9} + \frac{5}{18} \), (2) \( \frac{x^2 - y^2}{xy + x^2} \times \frac{-2x^3}{xy - x^2} \), (3) \( \frac{2}{2u + 3} \times \frac{3}{2u + 3} \div \frac{2}{4u^2 - 9} \), (4) \( \frac{x^2 - 9}{x^2 + 5x + 4} \times \frac{x^2 - 1}{x^2 + 6x + 9} \).

Solution

Let’s revisit and solve the problems step-by-step for clarification and better readability.


1. Simplify

2x+123x79+518\frac{2x + 1}{2} - \frac{3x - 7}{9} + \frac{5}{18}

Step 1: Find the least common denominator (LCD) for 22, 99, and 1818, which is 1818.

Step 2: Rewrite each fraction with a denominator of 1818: 2x+12=9(2x+1)18,3x79=2(3x7)18,518=518.\frac{2x + 1}{2} = \frac{9(2x + 1)}{18}, \quad \frac{3x - 7}{9} = \frac{2(3x - 7)}{18}, \quad \frac{5}{18} = \frac{5}{18}.

Step 3: Expand the numerators: 9(2x+1)18=18x+918,2(3x7)18=6x1418.\frac{9(2x + 1)}{18} = \frac{18x + 9}{18}, \quad \frac{2(3x - 7)}{18} = \frac{6x - 14}{18}.

Step 4: Combine all fractions: 18x+9186x1418+518.\frac{18x + 9}{18} - \frac{6x - 14}{18} + \frac{5}{18}.

Step 5: Combine numerators over the common denominator: (18x+9)(6x14)+518=18x+96x+14+518.\frac{(18x + 9) - (6x - 14) + 5}{18} = \frac{18x + 9 - 6x + 14 + 5}{18}.

Step 6: Simplify the numerator: 18x6x=12x,9+14+5=28.18x - 6x = 12x, \quad 9 + 14 + 5 = 28. 12x+2818.\frac{12x + 28}{18}.

Step 7: Factorize and simplify: 12x+2818=4(3x+7)6=2(3x+7)9.\frac{12x + 28}{18} = \frac{4(3x + 7)}{6} = \frac{2(3x + 7)}{9}.

Final Answer: 2(3x+7)9\frac{2(3x + 7)}{9}.


2. Simplify

x2y2xy+x2×2x3xyx2\frac{x^2 - y^2}{xy + x^2} \times \frac{-2x^3}{xy - x^2}

Step 1: Factorize:

  • x2y2=(xy)(x+y)x^2 - y^2 = (x - y)(x + y),
  • xy+x2=x(y+x)xy + x^2 = x(y + x),
  • xyx2=x(yx)xy - x^2 = x(y - x).

Step 2: Rewrite the expression: (xy)(x+y)x(y+x)×2x3x(yx).\frac{(x - y)(x + y)}{x(y + x)} \times \frac{-2x^3}{x(y - x)}.

Step 3: Combine the numerators and denominators: (xy)(x+y)(2x3)x(y+x)x(yx).\frac{(x - y)(x + y)(-2x^3)}{x(y + x)x(y - x)}.

Step 4: Simplify: Cancel xx and common terms (y+xy + x, etc.): 2x2(x+y)yx.\frac{-2x^2(x + y)}{y - x}.

Step 5: Simplify further by factoring out (xy)-(x - y) from yxy - x: 2x2(x+y)(xy)=2x2(x+y)xy.\frac{-2x^2(x + y)}{-(x - y)} = \frac{2x^2(x + y)}{x - y}.

Final Answer: 2x2(x+y)xy\frac{2x^2(x + y)}{x - y}.


3. Simplify

22u+3×32u+3÷24u29\frac{2}{2u + 3} \times \frac{3}{2u + 3} \div \frac{2}{4u^2 - 9}

Step 1: Factorize 4u29=(2u+3)(2u3)4u^2 - 9 = (2u + 3)(2u - 3).

Step 2: Rewrite the expression: 22u+3×32u+3÷2(2u+3)(2u3).\frac{2}{2u + 3} \times \frac{3}{2u + 3} \div \frac{2}{(2u + 3)(2u - 3)}.

Step 3: Division means multiplying by the reciprocal: 22u+3×32u+3×(2u+3)(2u3)2.\frac{2}{2u + 3} \times \frac{3}{2u + 3} \times \frac{(2u + 3)(2u - 3)}{2}.

Step 4: Simplify: 6(2u3)(2u+3)2.\frac{6(2u - 3)}{(2u + 3)^2}.

Final Answer: 6(2u3)(2u+3)2\frac{6(2u - 3)}{(2u + 3)^2}.


4. Simplify

x29x2+5x+4×x21x2+6x+9\frac{x^2 - 9}{x^2 + 5x + 4} \times \frac{x^2 - 1}{x^2 + 6x + 9}

Step 1: Factorize:

  • x29=(x3)(x+3)x^2 - 9 = (x - 3)(x + 3),
  • x2+5x+4=(x+4)(x+1)x^2 + 5x + 4 = (x + 4)(x + 1),
  • x21=(x1)(x+1)x^2 - 1 = (x - 1)(x + 1),
  • x2+6x+9=(x+3)(x+3)x^2 + 6x + 9 = (x + 3)(x + 3).

Step 2: Rewrite the expression: (x3)(x+3)(x+4)(x+1)×(x1)(x+1)(x+3)(x+3).\frac{(x - 3)(x + 3)}{(x + 4)(x + 1)} \times \frac{(x - 1)(x + 1)}{(x + 3)(x + 3)}.

Step 3: Combine numerators and denominators: (x3)(x+3)(x1)(x+1)(x+4)(x+1)(x+3)(x+3).\frac{(x - 3)(x + 3)(x - 1)(x + 1)}{(x + 4)(x + 1)(x + 3)(x + 3)}.

Step 4: Cancel common terms:

  • Cancel x+1x + 1 and one x+3x + 3: (x3)(x1)(x+4)(x+3).\frac{(x - 3)(x - 1)}{(x + 4)(x + 3)}.

Final Answer: (x3)(x1)(x+4)(x+3)\frac{(x - 3)(x - 1)}{(x + 4)(x + 3)}.


Do you have any specific questions or would you like further clarifications?


Related Questions

  1. What is the importance of factoring in simplifying algebraic fractions?
  2. How do you simplify division of fractions involving polynomials?
  3. How does recognizing common terms help in simplifying expressions?
  4. Can LCD methods apply to rational expressions with variables?
  5. What steps ensure accuracy when simplifying complex fractions?

Tip: Always double-check your work for errors by substituting a simple value (e.g., x=1x = 1) into the original and simplified expressions to see if they match.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Simplification of fractions
Factoring polynomials
Rational expressions

Formulas

Difference of squares: \( a^2 - b^2 = (a - b)(a + b) \)
Least common denominator (LCD) for combining fractions
Multiplication and division of rational expressions

Theorems

Factorization rules for polynomials

Suitable Grade Level

Grades 9-12