Math Problem Statement
(a) Simplify $\sqrt{x^{8} y^{10}} \div \sqrt[3]{x^{3} y^{-6}}$, giving your answer in the form $x^{a} y^{b}$, where $a$ and $b$ are integers. [2]
(b) (i) Show that $4(t-2)^{\frac{1}{2}}+5(t-2)^{\frac{3}{2}}$ can be written in the form $(t-2)^{p}(q t+r)$, where $p, q$ and $r$ are constants to be found.
(ii) Hence solve the equation $4(t-2)^{\frac{1}{2}}+5(t-2)^{\frac{3}{2}}=0$.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Simplification of Radicals
Exponents and Radicals
Factoring
Solving Equations
Formulas
Simplifying \(\sqrt{x^a y^b}\) as \(x^{\frac{a}{2}} y^{\frac{b}{2}}\)
Simplifying \(\sqrt[3]{x^a y^b}\) as \(x^{\frac{a}{3}} y^{\frac{b}{3}}\)
Theorems
Zero Product Property
Suitable Grade Level
Grades 10-12
Related Recommendation
Simplifying Radical Expressions and Fractional Exponents
Simplifying Algebraic Expressions with Exponents, Radicals, and Factoring
Simplifying Exponents and Rationalizing Radical Expressions
Simplifying Exponents and Radicals: Correct Equivalent Expressions
Simplify Radical and Exponential Expressions: Practice Problems