Math Problem Statement

Simplify radical and exponential expressions as shown in the image.

Solution

Here are the solutions for the math problems shown in the image:


12. 32g9h83\sqrt[3]{32g^9h^8}

  1. Factorize each term:
    • 32=2532 = 2^5
    • g9g^9 and h8h^8 already have exponents.
  2. Apply the cube root:
    • 253=25/3=21223\sqrt[3]{2^5} = 2^{5/3} = 2^1 \cdot \sqrt[3]{2^2}
    • g93=g9/3=g3\sqrt[3]{g^9} = g^{9/3} = g^3
    • h83=h8/3=h2h23\sqrt[3]{h^8} = h^{8/3} = h^2 \cdot \sqrt[3]{h^2}
  3. Combine terms: [ \sqrt[3]{32g^9h^8} = 2g^3h^2 \cdot \sqrt[3]{4h^2} ]

13. (16x12y4)1/4(16x^{12}y^4)^{1/4}

  1. Distribute the power 1/41/4 to each term:
    • 161/4=216^{1/4} = 2 (since 16=2416 = 2^4)
    • (x12)1/4=x12/4=x3(x^{12})^{1/4} = x^{12/4} = x^3
    • (y4)1/4=y4/4=y(y^4)^{1/4} = y^{4/4} = y
  2. Combine: (16x12y4)1/4=2x3y(16x^{12}y^4)^{1/4} = 2x^3y

14. 5m2m5(3n4)3/45m^2 \cdot m^5 \cdot (3n^4)^{3/4}

  1. Combine like terms for mm:
    • m2m5=m2+5=m7m^2 \cdot m^5 = m^{2+5} = m^7
  2. Simplify (3n4)3/4(3n^4)^{3/4}:
    • 33/43^{3/4} stays as is.
    • (n4)3/4=n43/4=n3(n^4)^{3/4} = n^{4 \cdot 3/4} = n^3
  3. Combine everything: 5m2m5(3n4)3/4=5m733/4n35m^2 \cdot m^5 \cdot (3n^4)^{3/4} = 5m^7 \cdot 3^{3/4}n^3 Final result: 5m733/4n35m^7 \cdot 3^{3/4}n^3

15. 16x54x3\sqrt{\frac{16x^5}{4x^3}}

  1. Simplify the fraction inside the square root:
    • 164=4\frac{16}{4} = 4
    • x5x3=x53=x2\frac{x^5}{x^3} = x^{5-3} = x^2
  2. Apply the square root:
    • 4=2\sqrt{4} = 2
    • x2=x\sqrt{x^2} = x
  3. Combine: 16x54x3=2x\sqrt{\frac{16x^5}{4x^3}} = 2x

16. a4b7c9a8b3c3\sqrt{\frac{a^4b^7c^9}{a^8b^3c^3}}

  1. Simplify the exponents:
    • a4a8=a48=a4\frac{a^4}{a^8} = a^{4-8} = a^{-4}
    • b7b3=b73=b4\frac{b^7}{b^3} = b^{7-3} = b^4
    • c9c3=c93=c6\frac{c^9}{c^3} = c^{9-3} = c^6
  2. Apply the square root:
    • a4=a2=1a2\sqrt{a^{-4}} = a^{-2} = \frac{1}{a^2}
    • b4=b2\sqrt{b^4} = b^2
    • c6=c3\sqrt{c^6} = c^3
  3. Combine: a4b7c9a8b3c3=b2c3a2\sqrt{\frac{a^4b^7c^9}{a^8b^3c^3}} = \frac{b^2c^3}{a^2}

17. 36m2n79m6n\sqrt{\frac{36m^2n^7}{9m^6n}}

  1. Simplify the fraction:
    • 369=4\frac{36}{9} = 4
    • m2m6=m26=m4\frac{m^2}{m^6} = m^{2-6} = m^{-4}
    • n7n=n71=n6\frac{n^7}{n} = n^{7-1} = n^6
  2. Apply the square root:
    • 4=2\sqrt{4} = 2
    • m4=m2=1m2\sqrt{m^{-4}} = m^{-2} = \frac{1}{m^2}
    • n6=n3\sqrt{n^6} = n^3
  3. Combine: 36m2n79m6n=2n3m2\sqrt{\frac{36m^2n^7}{9m^6n}} = \frac{2n^3}{m^2}

Final Answers:

  1. 12: 2g3h24h232g^3h^2 \cdot \sqrt[3]{4h^2}
  2. 13: 2x3y2x^3y
  3. 14: 5m733/4n35m^7 \cdot 3^{3/4}n^3
  4. 15: 2x2x
  5. 16: b2c3a2\frac{b^2c^3}{a^2}
  6. 17: 2n3m2\frac{2n^3}{m^2}

Would you like detailed explanations for any specific part?

Here are 5 related questions you might want to explore:

  1. How do you simplify radical expressions with exponents?
  2. What are the rules for dividing terms with the same base?
  3. How does a fractional exponent relate to roots (e.g., x1/3x^{1/3})?
  4. How do you simplify cube roots of variables?
  5. What happens when you have negative exponents?

Tip: Always simplify the fraction or expression inside the root first before applying the radical!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplifying radicals
Exponent rules
Simplifying fractional exponents
Combining like terms
Simplifying algebraic fractions

Formulas

√(a/b) = √a / √b
x^(a/b) = b√(x^a)
x^m * x^n = x^(m+n)
x^(m/n) = n√(x^m)

Theorems

Laws of exponents
Simplifying radicals (square root and cube root)
Properties of exponents with fractional powers

Suitable Grade Level

Grades 9-11