Math Problem Statement

Simplify these radicals

Simplify these radicals

Solution

Here are the solutions for simplifying the radicals in the problems:


Problem 12: 32g9h83\sqrt[3]{32g^9h^8}

To simplify a cube root:

  • 32=2532 = 2^5, so 323=2223\sqrt[3]{32} = 2 \cdot \sqrt[3]{2^2}.
  • g9g^9 simplifies as g93=g3\sqrt[3]{g^9} = g^3.
  • h8h^8 simplifies as h83=h2h23\sqrt[3]{h^8} = h^2 \cdot \sqrt[3]{h^2}.

Solution:
[ \sqrt[3]{32g^9h^8} = 2g^3h^2 \sqrt[3]{4h^2} ]


Problem 13: (16x12y8)14(16x^{12}y^8)^{\frac{1}{4}}

Apply the fourth root to each term:

  • 16=2416 = 2^4, so 164=2\sqrt[4]{16} = 2.
  • x12x^{12}: Divide the exponent by 4, x12/4=x3x^{12/4} = x^3.
  • y8y^8: Divide the exponent by 4, y8/4=y2y^{8/4} = y^2.

Solution:
(16x12y8)14=2x3y2(16x^{12}y^8)^{\frac{1}{4}} = 2x^3y^2


Problem 14: 5m5m25(3m4)45m^5 \cdot m^{\frac{2}{5}} \cdot \left(3m^4\right)^4

Simplify step by step:

  • 5m5m25=5m5+25=5m2755m^5 \cdot m^{\frac{2}{5}} = 5m^{5 + \frac{2}{5}} = 5m^{\frac{27}{5}}.
  • (3m4)4=34m16=81m16(3m^4)^4 = 3^4 \cdot m^{16} = 81m^{16}.
    Combine terms:
  • 5m27581m16=581m275+165m^{\frac{27}{5}} \cdot 81m^{16} = 5 \cdot 81 \cdot m^{\frac{27}{5} + 16}.
    Convert 1616 to fifths: 16=80516 = \frac{80}{5}, so:
    275+805=1075.\frac{27}{5} + \frac{80}{5} = \frac{107}{5}.

Solution:
5m5m25(3m4)4=405m10755m^5 \cdot m^{\frac{2}{5}} \cdot (3m^4)^4 = 405m^{\frac{107}{5}}


Problem 15: 16x54x3\sqrt{\frac{16x^5}{4x^3}}

Simplify the fraction under the square root:

  • 164=4\frac{16}{4} = 4.
  • For x5/x3x^5 / x^3, subtract exponents: x53=x2x^{5-3} = x^2.
    16x54x3=4x2=2x\sqrt{\frac{16x^5}{4x^3}} = \sqrt{4x^2} = 2x

Solution:
16x54x3=2x\sqrt{\frac{16x^5}{4x^3}} = 2x


Problem 16: a4b7c9a8b3c3\sqrt{\frac{a^4b^7c^9}{a^8b^3c^3}}

Simplify under the square root:

  • For aa: a48=a4a^{4-8} = a^{-4}.
  • For bb: b73=b4b^{7-3} = b^4.
  • For cc: c93=c6c^{9-3} = c^6.

Take the square root:

  • a4a^{-4} becomes a2a^{-2}.
  • b4=b2\sqrt{b^4} = b^2.
  • c6=c3\sqrt{c^6} = c^3.

Solution:
a4b7c9a8b3c3=b2c3a2\sqrt{\frac{a^4b^7c^9}{a^8b^3c^3}} = \frac{b^2c^3}{a^2}


Problem 17: 36m2n79m6n\sqrt{\frac{36m^2n^7}{9m^6n}}

Simplify the fraction under the square root:

  • 369=4\frac{36}{9} = 4.
  • For mm: m26=m4m^{2-6} = m^{-4}.
  • For nn: n71=n6n^{7-1} = n^6.

Take the square root:

  • 4=2\sqrt{4} = 2.
  • m4m^{-4} becomes m2m^{-2}.
  • n6=n3\sqrt{n^6} = n^3.

Solution:
36m2n79m6n=2n3m2\sqrt{\frac{36m^2n^7}{9m^6n}} = \frac{2n^3}{m^2}


Summary of Solutions:

  1. 32g9h83=2g3h24h23\sqrt[3]{32g^9h^8} = 2g^3h^2 \sqrt[3]{4h^2}
  2. (16x12y8)14=2x3y2(16x^{12}y^8)^{\frac{1}{4}} = 2x^3y^2
  3. 5m5m25(3m4)4=405m10755m^5 \cdot m^{\frac{2}{5}} \cdot (3m^4)^4 = 405m^{\frac{107}{5}}
  4. 16x54x3=2x\sqrt{\frac{16x^5}{4x^3}} = 2x
  5. a4b7c9a8b3c3=b2c3a2\sqrt{\frac{a^4b^7c^9}{a^8b^3c^3}} = \frac{b^2c^3}{a^2}
  6. 36m2n79m6n=2n3m2\sqrt{\frac{36m^2n^7}{9m^6n}} = \frac{2n^3}{m^2}

Do you want a deeper explanation for any problem? Let me know!

Related Questions:

  1. How do you simplify cube roots of exponents in general?
  2. How do you work with fractional exponents?
  3. How do you simplify radical expressions with variables?
  4. How do you combine terms with different bases and exponents?
  5. What happens when you encounter negative exponents under a radical?

Tip: When simplifying radicals with fractions, always simplify the numerator and denominator separately before applying the radical.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplifying Radicals
Fractional Exponents
Exponent Rules

Formulas

n√(a^m) = a^(m/n)
Product Rule: a^m * a^n = a^(m+n)
Quotient Rule: a^m / a^n = a^(m-n)

Theorems

Exponent Laws for Radicals
Simplification of Variables under Roots

Suitable Grade Level

Grades 9-11