Math Problem Statement

Simplify the following expressions: 1. 3(5√2) 2. (2√3)(√15) 3. 3(2√3 - 4√5) 4. √3(5√6 + 4√3) 5. (1 + √2)(3 + √2)

Solution

Let's work through each of the five expressions one by one to simplify them.

1. 3(52)3(5\sqrt{2})

This is a straightforward multiplication: 3×52=1523 \times 5\sqrt{2} = 15\sqrt{2} Simplified expression: 15215\sqrt{2}


2. (23)(15)(2\sqrt{3})(\sqrt{15})

We can combine the square roots: 23×15=23×15=2452\sqrt{3} \times \sqrt{15} = 2\sqrt{3 \times 15} = 2\sqrt{45} Now, simplify 45\sqrt{45}: 45=9×5=35\sqrt{45} = \sqrt{9 \times 5} = 3\sqrt{5} So, the entire expression becomes: 2×35=652 \times 3\sqrt{5} = 6\sqrt{5} Simplified expression: 656\sqrt{5}


3. 3(2345)3(2\sqrt{3} - 4\sqrt{5})

Distribute the 3: 3×23=63,3×45=1253 \times 2\sqrt{3} = 6\sqrt{3}, \quad 3 \times -4\sqrt{5} = -12\sqrt{5} So, the simplified expression is: 631256\sqrt{3} - 12\sqrt{5} Simplified expression: 631256\sqrt{3} - 12\sqrt{5}


4. 3(56+43)\sqrt{3}(5\sqrt{6} + 4\sqrt{3})

Distribute the 3\sqrt{3}: 3×56=53×6=518=5×32=152\sqrt{3} \times 5\sqrt{6} = 5\sqrt{3 \times 6} = 5\sqrt{18} = 5 \times 3\sqrt{2} = 15\sqrt{2} 3×43=43×3=49=4×3=12\sqrt{3} \times 4\sqrt{3} = 4\sqrt{3 \times 3} = 4\sqrt{9} = 4 \times 3 = 12 So, the expression becomes: 152+1215\sqrt{2} + 12 Simplified expression: 152+1215\sqrt{2} + 12


5. (1+2)(3+2)(1 + \sqrt{2})(3 + \sqrt{2})

Apply the distributive property (FOIL method): 1×3=3,1×2=21 \times 3 = 3, \quad 1 \times \sqrt{2} = \sqrt{2} 2×3=32,2×2=2\sqrt{2} \times 3 = 3\sqrt{2}, \quad \sqrt{2} \times \sqrt{2} = 2 Now, add everything: 3+2+32+2=5+423 + \sqrt{2} + 3\sqrt{2} + 2 = 5 + 4\sqrt{2} Simplified expression: 5+425 + 4\sqrt{2}


If you need more details or further clarifications on any step, feel free to ask!

Relative Questions:

  1. How do you simplify the multiplication of two square roots in general?
  2. What is the distributive property, and how is it applied to square roots?
  3. Why does 2×2=2\sqrt{2} \times \sqrt{2} = 2 hold true?
  4. How do you simplify complex expressions with multiple square roots?
  5. What techniques can be used to simplify 45\sqrt{45} into 353\sqrt{5}?

Tip:

When simplifying square roots, always check if the radicand (number inside the square root) can be factored into a perfect square, which allows for further simplification!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplification of Expressions
Multiplication of Square Roots
Distributive Property
Combining Like Terms

Formulas

a√b × c√d = ac√(bd)
Distributive Property: a(b + c) = ab + ac
(a + b)(c + d) = ac + ad + bc + bd

Theorems

-

Suitable Grade Level

Grades 8-10