Math Problem Statement

solve

Remove the brackets and simplify the given expressions from the image.

Solution

The question asks to "Remove the brackets and simplify" for each expression. Let's start by expanding the brackets for each expression step by step.

1st row:

  1. (x+2)(x3)(x4)(x + 2)(x - 3)(x - 4):

    • First, expand (x+2)(x3)(x + 2)(x - 3): (x+2)(x3)=x23x+2x6=x2x6(x + 2)(x - 3) = x^2 - 3x + 2x - 6 = x^2 - x - 6
    • Now, expand with (x4)(x - 4): (x2x6)(x4)=x34x2x2+4x6x+24=x35x22x+24(x^2 - x - 6)(x - 4) = x^3 - 4x^2 - x^2 + 4x - 6x + 24 = x^3 - 5x^2 - 2x + 24
  2. (2x1)(x+1)(x1)(2x - 1)(x + 1)(x - 1):

    • First, expand (x+1)(x1)(x + 1)(x - 1): (x+1)(x1)=x21(x + 1)(x - 1) = x^2 - 1
    • Now, expand with (2x1)(2x - 1): (2x1)(x21)=2x32xx2+1=2x3x22x+1(2x - 1)(x^2 - 1) = 2x^3 - 2x - x^2 + 1 = 2x^3 - x^2 - 2x + 1
  3. (6x5)(2x+7)(3x8)(6x - 5)(2x + 7)(3x - 8):

    • First, expand (6x5)(2x+7)(6x - 5)(2x + 7): (6x5)(2x+7)=12x2+42x10x35=12x2+32x35(6x - 5)(2x + 7) = 12x^2 + 42x - 10x - 35 = 12x^2 + 32x - 35
    • Now, expand with (3x8)(3x - 8): (12x2+32x35)(3x8)=36x396x2+96x2256x105x+280=36x3361x+280(12x^2 + 32x - 35)(3x - 8) = 36x^3 - 96x^2 + 96x^2 - 256x - 105x + 280 = 36x^3 - 361x + 280

2nd row:

  1. (x1)(2x+3)2(x - 1)(2x + 3)^2:

    • Expand (2x+3)2(2x + 3)^2: (2x+3)2=4x2+12x+9(2x + 3)^2 = 4x^2 + 12x + 9
    • Now, expand with (x1)(x - 1): (x1)(4x2+12x+9)=x(4x2+12x+9)(4x2+12x+9)=4x3+12x2+9x4x212x9=4x3+8x23x9(x - 1)(4x^2 + 12x + 9) = x(4x^2 + 12x + 9) - (4x^2 + 12x + 9) = 4x^3 + 12x^2 + 9x - 4x^2 - 12x - 9 = 4x^3 + 8x^2 - 3x - 9
  2. (x2)3(x+1)3(x - 2)^3 - (x + 1)^3:

    • Use binomial expansion for both cubes: (x2)3=x36x2+12x8(x - 2)^3 = x^3 - 6x^2 + 12x - 8 (x+1)3=x3+3x2+3x+1(x + 1)^3 = x^3 + 3x^2 + 3x + 1
    • Subtract the two: (x2)3(x+1)3=(x36x2+12x8)(x3+3x2+3x+1)(x - 2)^3 - (x + 1)^3 = (x^3 - 6x^2 + 12x - 8) - (x^3 + 3x^2 + 3x + 1) =x36x2+12x8x33x23x1=9x2+9x9= x^3 - 6x^2 + 12x - 8 - x^3 - 3x^2 - 3x - 1 = -9x^2 + 9x - 9

3rd row:

  1. (x1)(x3)(x5)(x - 1)(x - 3)(x - 5):

    • First, expand (x1)(x3)(x - 1)(x - 3): (x1)(x3)=x23xx+3=x24x+3(x - 1)(x - 3) = x^2 - 3x - x + 3 = x^2 - 4x + 3
    • Now, expand with (x5)(x - 5): (x24x+3)(x5)=x35x24x2+20x+3x15=x39x2+23x15(x^2 - 4x + 3)(x - 5) = x^3 - 5x^2 - 4x^2 + 20x + 3x - 15 = x^3 - 9x^2 + 23x - 15
  2. (3x+1)(2x+1)(x2)(3x + 1)(2x + 1)(x - 2):

    • First, expand (3x+1)(2x+1)(3x + 1)(2x + 1): (3x+1)(2x+1)=6x2+3x+2x+1=6x2+5x+1(3x + 1)(2x + 1) = 6x^2 + 3x + 2x + 1 = 6x^2 + 5x + 1
    • Now, expand with (x2)(x - 2): (6x2+5x+1)(x2)=6x312x2+5x210x+x2=6x37x29x2(6x^2 + 5x + 1)(x - 2) = 6x^3 - 12x^2 + 5x^2 - 10x + x - 2 = 6x^3 - 7x^2 - 9x - 2

Do you need more details or want me to continue? Here are some related problems:

  1. How do you handle the expansion of cubic expressions?
  2. What are some shortcuts for expanding binomials?
  3. Can you use special products to expand quadratic terms faster?
  4. How does the order of multiplication affect expansion results?
  5. Are there any techniques to factorize after expanding?

Tip: Always simplify intermediate steps before proceeding to avoid unnecessary complexity.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomial Expansion
Factoring
Simplification

Formulas

(a+b)(a-b) = a^2 - b^2
Polynomial multiplication
Cubic and quadratic binomial expansion

Theorems

Distributive Property of Multiplication
Binomial Theorem

Suitable Grade Level

Grades 9-11