Math Problem Statement

Give me 30 similar problems so I can study

3 log_b 2 - log_b 4

Solution

Here are 30 similar logarithmic expression problems for you to study:

  1. 2logb3logb52 \log_b 3 - \log_b 5
  2. logb8+4logb2\log_b 8 + 4 \log_b 2
  3. 5logb4logb165 \log_b 4 - \log_b 16
  4. 3logb5+logb73 \log_b 5 + \log_b 7
  5. 2logb10logb22 \log_b 10 - \log_b 2
  6. 4logb3logb94 \log_b 3 - \log_b 9
  7. 6logb2+logb86 \log_b 2 + \log_b 8
  8. 3logb72logb33 \log_b 7 - 2 \log_b 3
  9. logb325logb2\log_b 32 - 5 \log_b 2
  10. logb100+2logb10\log_b 100 + 2 \log_b 10
  11. logb6+3logb4\log_b 6 + 3 \log_b 4
  12. 7logb5logb1257 \log_b 5 - \log_b 125
  13. 4logb6+2logb34 \log_b 6 + 2 \log_b 3
  14. 5logb8logb25 \log_b 8 - \log_b 2
  15. 3logb4+2logb53 \log_b 4 + 2 \log_b 5
  16. 6logb2logb646 \log_b 2 - \log_b 64
  17. logb9+3logb2\log_b 9 + 3 \log_b 2
  18. 4logb7logb494 \log_b 7 - \log_b 49
  19. 3logb6+logb33 \log_b 6 + \log_b 3
  20. 2logb8logb42 \log_b 8 - \log_b 4
  21. 5logb10+logb55 \log_b 10 + \log_b 5
  22. 3logb12logb93 \log_b 12 - \log_b 9
  23. logb5+4logb3\log_b 5 + 4 \log_b 3
  24. 6logb3logb276 \log_b 3 - \log_b 27
  25. 2logb9+logb82 \log_b 9 + \log_b 8
  26. 3logb2logb53 \log_b 2 - \log_b 5
  27. 7logb4+2logb27 \log_b 4 + 2 \log_b 2
  28. logb10+3logb5\log_b 10 + 3 \log_b 5
  29. 4logb6logb124 \log_b 6 - \log_b 12
  30. 5logb7+logb25 \log_b 7 + \log_b 2

These problems will give you good practice in manipulating and simplifying logarithmic expressions. Would you like an explanation of any particular problem, or have specific questions on logarithmic rules?

Here are some additional questions to guide your study:

  1. How do you apply the power rule of logarithms in expressions like 3logb23 \log_b 2?
  2. What is the effect of subtraction in logarithmic expressions, like in 3logb2logb43 \log_b 2 - \log_b 4?
  3. Can you express logb4\log_b 4 in terms of logb2\log_b 2?
  4. How does the change of base formula apply in logarithmic problems?
  5. What happens when you add or subtract logs of the same base?

Tip: Remember that subtraction of logarithms (e.g., logbAlogbB\log_b A - \log_b B) can be expressed as a division of their arguments: logb(AB)\log_b \left(\frac{A}{B}\right). This can simplify your calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Properties of Logarithms

Formulas

Power Rule of Logarithms: a log_b x = log_b(x^a)
Quotient Rule of Logarithms: log_b A - log_b B = log_b(A/B)

Theorems

Properties of Logarithms

Suitable Grade Level

Grades 10-12