Math Problem Statement

can you guide me through the steps to simplify this problem: (9^(-z+1/7)(1/243)^((-4/9y)-(2/7))(1/243)^(5/2))/(27^(1/3x)(27)^((-5/8y)-(3/7))(9)^((2x+2/7))

Solution

Certainly! Let’s simplify the expression step by step. The given expression is:

9(z+17)(1/243)(49y27)(1/243)522713x27(58y37)9(2x+27)\frac{9^{(-z + \frac{1}{7})} \cdot (1/243)^{(-\frac{4}{9}y - \frac{2}{7})} \cdot (1/243)^{\frac{5}{2}}}{27^{\frac{1}{3}x} \cdot 27^{(-\frac{5}{8}y - \frac{3}{7})} \cdot 9^{(2x + \frac{2}{7})}}

Step 1: Convert Bases

First, express all numbers in terms of powers of 3:

  • 9=329 = 3^2
  • 27=3327 = 3^3
  • 243=35243 = 3^5

Now we rewrite the expression using these conversions:

  1. 9(z+17)=(32)(z+17)=32(z+17)=32z+279^{(-z + \frac{1}{7})} = (3^2)^{(-z + \frac{1}{7})} = 3^{2(-z + \frac{1}{7})} = 3^{-2z + \frac{2}{7}}
  2. (1/243)=(35)(1/243) = (3^{-5}), so: (1/243)(49y27)=(35)(49y27)=35(49y+27)(1/243)^{(-\frac{4}{9}y - \frac{2}{7})} = (3^{-5})^{(-\frac{4}{9}y - \frac{2}{7})} = 3^{5(\frac{4}{9}y + \frac{2}{7})} (1/243)52=(35)52=3252(1/243)^{\frac{5}{2}} = (3^{-5})^{\frac{5}{2}} = 3^{- \frac{25}{2}}
  3. 2713x=(33)13x=3x27^{\frac{1}{3}x} = (3^3)^{\frac{1}{3}x} = 3^{x}
  4. 27(58y37)=(33)(58y37)=3(3)(58y+37)=3158y9727^{(-\frac{5}{8}y - \frac{3}{7})} = (3^3)^{(-\frac{5}{8}y - \frac{3}{7})} = 3^{(-3)(\frac{5}{8}y + \frac{3}{7})} = 3^{- \frac{15}{8}y - \frac{9}{7}}
  5. 9(2x+27)=(32)(2x+27)=32(2x+27)=34x+479^{(2x + \frac{2}{7})} = (3^2)^{(2x + \frac{2}{7})} = 3^{2(2x + \frac{2}{7})} = 3^{4x + \frac{4}{7}}

Step 2: Substitute Back into the Expression

Now substitute these values back into the original expression:

32z+273209y+10732523x3158y9734x+47\frac{3^{-2z + \frac{2}{7}} \cdot 3^{\frac{20}{9}y + \frac{10}{7}} \cdot 3^{- \frac{25}{2}}}{3^{x} \cdot 3^{- \frac{15}{8}y - \frac{9}{7}} \cdot 3^{4x + \frac{4}{7}}}

Step 3: Combine the Exponents

Combine the exponents in the numerator and denominator:

Numerator: 2z+27+209y+107252-2z + \frac{2}{7} + \frac{20}{9}y + \frac{10}{7} - \frac{25}{2}

Denominator: x(158y+97)+(4x+47)x - \left(\frac{15}{8}y + \frac{9}{7}\right) + (4x + \frac{4}{7})

Step 4: Simplify Each Part

  1. Numerator: Combine the constant terms and coefficients of yy: 2z+(209158)y+(27+107252)-2z + \left(\frac{20}{9} - \frac{15}{8}\right)y + \left(\frac{2}{7} + \frac{10}{7} - \frac{25}{2}\right)

    Calculate 209158\frac{20}{9} - \frac{15}{8} and 2+1087.57=75.57\frac{2 + 10 - 87.5}{7} = \frac{-75.5}{7}.

  2. Denominator: Combine the terms: (x+4x)158y97+47=5x158y57(x + 4x) - \frac{15}{8}y - \frac{9}{7} + \frac{4}{7} = 5x - \frac{15}{8}y - \frac{5}{7}

Step 5: Final Result

After combining and simplifying, write the final expression as:

3(numerator exponent - denominator exponent)3^{\text{(numerator exponent - denominator exponent)}}

Would you like to see the calculations for the exact values of the exponents, or do you have any questions about the steps?

Additional Questions:

  1. What is the significance of converting numbers to a common base?
  2. How do you determine the common denominator for adding fractions?
  3. Can you provide an example of simplifying a different expression using these steps?
  4. How would you approach similar problems with different bases?
  5. What are some common pitfalls to avoid in these types of simplifications?

Tip:

Always keep track of negative exponents and ensure you simplify fractions correctly to avoid errors in your calculations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Simplifying Expressions
Algebra

Formulas

a^m * a^n = a^(m+n)
a^(-n) = 1/a^n
Change of Base

Theorems

Properties of Exponents

Suitable Grade Level

Grades 9-12