Math Problem Statement

(7/8)^(-3) * (-7/8)^4 ÷ (4/7)^(-6)

Solution

The given expression is:

(78)3×(78)4÷(47)6\left(\frac{7}{8}\right)^{-3} \times \left(\frac{-7}{8}\right)^{4} \div \left(\frac{4}{7}\right)^{-6}

To simplify this expression, follow these steps:

Step 1: Apply the negative exponents

  • A negative exponent means you take the reciprocal of the base. So, applying the exponents:

(78)3=(87)3\left(\frac{7}{8}\right)^{-3} = \left(\frac{8}{7}\right)^{3}

(78)4=(7)484=24014096\left(\frac{-7}{8}\right)^{4} = \frac{(-7)^{4}}{8^{4}} = \frac{2401}{4096}

(47)6=(74)6\left(\frac{4}{7}\right)^{-6} = \left(\frac{7}{4}\right)^{6}

Step 2: Rewrite the expression

The expression now becomes:

(87)3×24014096÷(74)6\left(\frac{8}{7}\right)^{3} \times \frac{2401}{4096} \div \left(\frac{7}{4}\right)^{6}

Step 3: Convert division to multiplication

Dividing by a fraction is equivalent to multiplying by its reciprocal:

(87)3×24014096×(47)6\left(\frac{8}{7}\right)^{3} \times \frac{2401}{4096} \times \left(\frac{4}{7}\right)^{6}

Step 4: Combine the powers with the same base

Now, combine the fractions:

  1. Combine the powers of 87\frac{8}{7}:

(87)3×(47)6\left(\frac{8}{7}\right)^{3} \times \left(\frac{4}{7}\right)^{6}

  1. Simplify the powers:

(87)3\left(\frac{8}{7}\right)^3 simplifies to 512343\frac{512}{343}

(47)6\left(\frac{4}{7}\right)^6 simplifies to 4096117649\frac{4096}{117649}

Thus, you get:

512343×4096117649×24014096\frac{512}{343} \times \frac{4096}{117649} \times \frac{2401}{4096}

Combining the fractions results in:

512×2401343×117649\frac{512 \times 2401}{343 \times 117649}

You can continue to multiply, but this is simplified.

If you have further queries or clarifications on this or any other math question, I’m here to help!


Here are 5 related questions to practice:

  1. How would you simplify (53)2×(53)4(\frac{5}{3})^{-2} \times (\frac{5}{3})^4?
  2. What does it mean to have a negative exponent in a fraction?
  3. Can you simplify the expression (25)3×(52)3(\frac{2}{5})^{-3} \times (\frac{5}{2})^3?
  4. How do you multiply and divide fractions with different exponents?
  5. What is the general rule for simplifying expressions with multiple exponents?

Tip: When dealing with exponents, always remember that negative exponents mean reciprocal, and fractional exponents mean roots.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Negative Exponents
Fractional Multiplication and Division
Reciprocal of Fractions

Formulas

Negative Exponent Rule: a^(-n) = 1/(a^n)
Multiplication of Powers: a^m * a^n = a^(m+n)
Division of Powers: a^m ÷ a^n = a^(m-n)

Theorems

Properties of Exponents

Suitable Grade Level

Grades 9-12