Math Problem Statement

Simplify the expression: ((2x^-3 * y^4)^3 * (x^2 * y^-3)/(4x * y^5))^-2 / (16x^-6 * y^12)

Solution

Let's solve the given expression step by step.

The given expression is:

(2x3y4)3(x2y34xy5)216x6y12\frac{\left( 2x^{-3} y^4 \right)^3 \left( \frac{x^2 y^{-3}}{4x y^5} \right)^{-2}}{16x^{-6} y^{12}}

Step 1: Simplify (2x3y4)3\left( 2x^{-3} y^4 \right)^3

Apply the power rule (ambn)p=ampbnp(a^m b^n)^p = a^{mp} b^{np}:

(2x3y4)3=23x9y12=8x9y12\left( 2x^{-3} y^4 \right)^3 = 2^3 x^{-9} y^{12} = 8x^{-9} y^{12}

Step 2: Simplify (x2y34xy5)2\left( \frac{x^2 y^{-3}}{4x y^5} \right)^{-2}

First, simplify the fraction inside the parentheses:

x2y34xy5=x24xy3y5=x14y8=xy84\frac{x^2 y^{-3}}{4x y^5} = \frac{x^2}{4x} \cdot \frac{y^{-3}}{y^5} = \frac{x^1}{4} \cdot y^{-8} = \frac{x y^{-8}}{4}

Now, apply the exponent of 2-2 to this fraction:

(xy84)2=42(xy8)2=16x2y16=16y16x2\left( \frac{x y^{-8}}{4} \right)^{-2} = \frac{4^2}{(x y^{-8})^2} = \frac{16}{x^2 y^{-16}} = \frac{16 y^{16}}{x^2}

Step 3: Multiply the results from Step 1 and Step 2

Multiply the two simplified terms:

8x9y1216y16x2=816y12y16x9x2=128y28x78x^{-9} y^{12} \cdot \frac{16 y^{16}}{x^2} = \frac{8 \cdot 16 \cdot y^{12} \cdot y^{16}}{x^{-9} \cdot x^2} = \frac{128 y^{28}}{x^{-7}}

Since x9x2=x7x^{-9} \cdot x^2 = x^{-7}, and simplifying x7x^{-7} moves it to the numerator as x7x^7:

128x7y28128 x^7 y^{28}

Step 4: Divide by the denominator 16x6y1216x^{-6} y^{12}

Now divide the result from Step 3 by 16x6y1216x^{-6} y^{12}:

128x7y2816x6y12=12816x7x6y28y12=8x7(6)y2812\frac{128 x^7 y^{28}}{16 x^{-6} y^{12}} = \frac{128}{16} \cdot \frac{x^7}{x^{-6}} \cdot \frac{y^{28}}{y^{12}} = 8 \cdot x^{7 - (-6)} \cdot y^{28 - 12}

This simplifies to:

8x13y168 x^{13} y^{16}

Final Answer:

8x13y168 x^{13} y^{16}

Let me know if you would like more details or have any other questions!

Here are five follow-up questions related to this topic:

  1. How do you simplify expressions involving negative exponents?
  2. Can you apply the power of a quotient rule to another example?
  3. How does multiplying terms with exponents work?
  4. What happens if a base is raised to a negative power and divided?
  5. How does exponentiation affect both the numerator and denominator in a fraction?

Tip: Always simplify expressions inside parentheses before applying any exponent rules!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponentiation
Algebra
Negative Exponents
Fraction Simplification

Formulas

(a^m * b^n)^p = a^(mp) * b^(np)
Power of a quotient rule: (a/b)^p = a^p / b^p
Multiplying like bases: a^m * a^n = a^(m+n)

Theorems

Exponentiation rules
Properties of exponents

Suitable Grade Level

Grades 9-12