Math Problem Statement

((7-3x)^1/2 + 3x/2 (7-3x)^-1/2) / 7-3x

Solution

We are given the expression:

((73x)12+3x2(73x)12)73x\frac{\left( (7 - 3x)^{\frac{1}{2}} + \frac{3x}{2} (7 - 3x)^{-\frac{1}{2}} \right)}{7 - 3x}

Let's simplify it step by step.

Step 1: Factor Out (73x)12(7 - 3x)^{-\frac{1}{2}}

Rewriting the terms:

(73x)12=(73x)12(7 - 3x)^{\frac{1}{2}} = (7 - 3x)^{\frac{1}{2}}

3x2(73x)12=3x21(73x)12\frac{3x}{2} (7 - 3x)^{-\frac{1}{2}} = \frac{3x}{2} \cdot \frac{1}{(7 - 3x)^{\frac{1}{2}}}

So, rewriting the numerator:

(73x)12+3x2(73x)12(7 - 3x)^{\frac{1}{2}} + \frac{3x}{2} (7 - 3x)^{-\frac{1}{2}}

Factoring out (73x)12(7 - 3x)^{-\frac{1}{2}}:

(73x)12((73x)+3x2)(7 - 3x)^{-\frac{1}{2}} \left( (7 - 3x) + \frac{3x}{2} \right)

Step 2: Simplify the Bracketed Term

(73x)+3x2=2(73x)2+3x2(7 - 3x) + \frac{3x}{2} = \frac{2(7 - 3x)}{2} + \frac{3x}{2}

=146x+3x2=143x2= \frac{14 - 6x + 3x}{2} = \frac{14 - 3x}{2}

So the numerator becomes:

(73x)12143x2(7 - 3x)^{-\frac{1}{2}} \cdot \frac{14 - 3x}{2}

Step 3: Divide by 73x7 - 3x

Since we are dividing by 73x7 - 3x, rewrite it as:

(73x)12143x273x\frac{(7 - 3x)^{-\frac{1}{2}} \cdot \frac{14 - 3x}{2}}{7 - 3x}

Rewriting 73x7 - 3x as (73x)1(7 - 3x)^1:

(73x)12143x2(73x)1(7 - 3x)^{-\frac{1}{2}} \cdot \frac{14 - 3x}{2} \cdot (7 - 3x)^{-1}

Using exponent properties:

(73x)121143x2(7 - 3x)^{-\frac{1}{2} - 1} \cdot \frac{14 - 3x}{2}

(73x)32143x2(7 - 3x)^{-\frac{3}{2}} \cdot \frac{14 - 3x}{2}

Since (73x)32(7 - 3x)^{-\frac{3}{2}} can be rewritten as:

1(73x)32\frac{1}{(7 - 3x)^{\frac{3}{2}}}

The final expression simplifies to:

143x2(73x)32\frac{14 - 3x}{2(7 - 3x)^{\frac{3}{2}}}


Would you like me to verify or explain any part in more detail?

Related Questions:

  1. How do you simplify expressions with fractional exponents?
  2. What are the rules for factoring out common terms in expressions?
  3. How do you handle negative exponents when simplifying algebraic expressions?
  4. What are some common strategies for simplifying complex fractions?
  5. How do exponent rules apply to rational expressions?

Tip: When dealing with negative exponents, rewrite them as fractions to simplify expressions easily.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Fractional Exponents
Exponent Laws
Simplifying Expressions
Rational Expressions

Formulas

Exponent Rule: a^m * a^n = a^(m+n)
Exponent Rule: a^-m = 1/a^m
Factorization of expressions

Theorems

Exponent Properties
Simplifying Rational Expressions

Suitable Grade Level

Grades 9-11