Math Problem Statement

4\cdot 365\cdot 20=\frac{2\left(0.005^{\frac{-1.3}{2}}-x^{\frac{-1.3}{2}}\right)}{\left(-1.3\right)\cdot 0.24\cdot 10^{-11}\cdot 1.5^{3.3}\cdot 25^{3.3}\cdot \pi ^{1.65}}

Solution

Let's solve this step-by-step.

We are given the equation:

436520=2(0.0051.32x1.32)(1.3)0.2410111.53.3253.3π1.654 \cdot 365 \cdot 20 = \frac{2\left(0.005^{\frac{-1.3}{2}} - x^{\frac{-1.3}{2}}\right)}{\left(-1.3\right) \cdot 0.24 \cdot 10^{-11} \cdot 1.5^{3.3} \cdot 25^{3.3} \cdot \pi^{1.65}}

Step 1: Simplify the left-hand side

The left-hand side is:

4365204 \cdot 365 \cdot 20

First, multiply:

4365=14604 \cdot 365 = 1460

Then:

146020=292001460 \cdot 20 = 29200

So, the left-hand side is 29200.

Step 2: Simplify the denominator of the right-hand side

Let's break down the denominator:

(1.3)0.2410111.53.3253.3π1.65\left(-1.3\right) \cdot 0.24 \cdot 10^{-11} \cdot 1.5^{3.3} \cdot 25^{3.3} \cdot \pi^{1.65}

We can simplify each part individually.

  • 1.53.33.42051.5^{3.3} \approx 3.4205
  • 253.33280.62725^{3.3} \approx 3280.627
  • π1.653.6735\pi^{1.65} \approx 3.6735

Now, multiplying all the constants together:

1.30.2410113.42053280.6273.6735-1.3 \cdot 0.24 \cdot 10^{-11} \cdot 3.4205 \cdot 3280.627 \cdot 3.6735

This simplifies to:

1.30.24101141810.737-1.3 \cdot 0.24 \cdot 10^{-11} \cdot 41810.737

1.30.24=0.312-1.3 \cdot 0.24 = -0.312

Now:

0.312101141810.737=1.303107-0.312 \cdot 10^{-11} \cdot 41810.737 = -1.303 \cdot 10^{-7}

So the denominator simplifies to approximately:

1.303107-1.303 \cdot 10^{-7}

Step 3: Rearrange the equation

We now have:

29200=2(0.0051.32x1.32)1.30310729200 = \frac{2\left(0.005^{\frac{-1.3}{2}} - x^{\frac{-1.3}{2}}\right)}{-1.303 \cdot 10^{-7}}

Multiply both sides by 1.303107-1.303 \cdot 10^{-7}:

29200(1.303107)=2(0.0051.32x1.32)29200 \cdot (-1.303 \cdot 10^{-7}) = 2\left(0.005^{\frac{-1.3}{2}} - x^{\frac{-1.3}{2}}\right)

3.8046103=2(0.0051.32x1.32)-3.8046 \cdot 10^{-3} = 2\left(0.005^{\frac{-1.3}{2}} - x^{\frac{-1.3}{2}}\right)

Step 4: Simplify further

Now, divide by 2:

1.9023103=0.0051.32x1.32-1.9023 \cdot 10^{-3} = 0.005^{\frac{-1.3}{2}} - x^{\frac{-1.3}{2}}

So, solving for x1.32x^{\frac{-1.3}{2}}:

x1.32=0.0051.32+1.9023103x^{\frac{-1.3}{2}} = 0.005^{\frac{-1.3}{2}} + 1.9023 \cdot 10^{-3}

Next, calculate 0.0051.320.005^{\frac{-1.3}{2}}:

0.0051.3255.0810.005^{\frac{-1.3}{2}} \approx 55.081

So:

x1.32=55.081+1.9023103x^{\frac{-1.3}{2}} = 55.081 + 1.9023 \cdot 10^{-3}

x1.3255.083x^{\frac{-1.3}{2}} \approx 55.083

Step 5: Solve for xx

Now, raise both sides to the power of 21.3\frac{2}{-1.3}:

x=(55.083)21.3x = \left(55.083\right)^{\frac{2}{-1.3}}

This gives:

x2.110x \approx 2.110

Thus, the solution for xx is approximately:

x2.110x \approx 2.110


Would you like more details or explanations? Feel free to ask!

Here are some related questions to explore further:

  1. How do negative exponents affect calculations, particularly when solving for a variable?
  2. What is the significance of scientific notation in equations like this one?
  3. Can this method be applied to other equations involving negative exponents?
  4. How do you handle complex denominators like the one in this equation?
  5. What are the practical applications of equations similar to the one above?

Tip: When working with exponents, especially negative ones, remember that they indicate inverse powers, and it’s crucial to maintain precision when dealing with such small or large values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Exponents
Scientific Notation

Formulas

Exponential equations
Scientific notation multiplication
Rearranging algebraic equations

Theorems

Exponential laws
Negative exponents

Suitable Grade Level

Grades 11-12