Math Problem Statement

{((-2)^3 / [2 - (-2)^2]) - ([15 - 3] / [2 - 8])}

Solution

The mathematical expression from the image is:

[ \left{ \frac{(-2)^3}{[2 - (-2)^2]} \right} - \left{ \frac{[15 - 3]}{2 - 8} \right} ]

Let's break this down step by step.

Left side expression:

(2)32(2)2\frac{(-2)^3}{2 - (-2)^2}

  • (2)3=8(-2)^3 = -8
  • (2)2=4(-2)^2 = 4, so 24=22 - 4 = -2

Thus, the left side simplifies to: 82=4\frac{-8}{-2} = 4

Right side expression:

15328\frac{15 - 3}{2 - 8}

  • 153=1215 - 3 = 12
  • 28=62 - 8 = -6

Thus, the right side simplifies to: 126=2\frac{12}{-6} = -2

Final step:

Now subtract the two results: 4(2)=4+2=64 - (-2) = 4 + 2 = 6

So the final result of the entire expression is 6.

Would you like more details or have any questions?

Here are 5 related questions for further practice:

  1. Simplify (3)43(3)2\frac{(-3)^4}{3 - (-3)^2}.
  2. Evaluate 7225(2)3\frac{7 - 2^2}{5 - (-2)^3}.
  3. Calculate 43922\frac{4^3}{9 - 2^2}.
  4. Find the result of 5124(2)25 - \frac{12}{4 - (-2)^2}.
  5. Simplify {(5)23(1)2}{104(6)}\left\{ \frac{(-5)^2}{3 - (-1)^2} \right\} - \left\{ \frac{10}{4 - (-6)} \right\}.

Tip: Always handle exponents and parentheses first in expressions to avoid errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Arithmetic Operations
Exponents
Fractions

Formulas

Exponentiation: a^n = a * a * ... (n times)
Fraction: (numerator) / (denominator)

Theorems

-

Suitable Grade Level

Grades 8-10