Math Problem Statement

give me the answer with solution

Simplify the following expressions. Assume all denominators are not equal to zero.

Solution

Let's work through these simplifications step by step. We will apply the rules of exponents to simplify each expression:

1. (bh)3\left(\frac{b}{h}\right)^3

Apply the power to both the numerator and denominator: b3h3\frac{b^3}{h^3}

2. (2c2)2\left(\frac{2}{c^2}\right)^2

Distribute the exponent of 2 to both the numerator and denominator: 22c2×2=4c4\frac{2^2}{c^{2 \times 2}} = \frac{4}{c^4}

3. (rqds)5\left(\frac{rq}{ds}\right)^5

Distribute the exponent of 5 to each term in the numerator and denominator: r5q5d5s5\frac{r^5 q^5}{d^5 s^5}

4. (abcd)6\left(\frac{ab}{cd}\right)^6

Distribute the exponent of 6: a6b6c6d6\frac{a^6 b^6}{c^6 d^6}

5. (abcxyz)8\left(\frac{abc}{xyz}\right)^8

Distribute the exponent of 8: a8b8c8x8y8z8\frac{a^8 b^8 c^8}{x^8 y^8 z^8}

6. (x2y3za5b4c2)6\left(\frac{x^2 y^3 z}{a^5 b^4 c^2}\right)^6

Distribute the exponent of 6 to each term: x12y18z6a30b24c12\frac{x^{12} y^{18} z^6}{a^{30} b^{24} c^{12}}

7. (mnnn2)4\left(\frac{m^n n}{n^2}\right)^4

Simplify inside the parentheses first: mnnn2=mnn\frac{m^n n}{n^2} = \frac{m^n}{n} Now apply the exponent of 4: m4nn4\frac{m^{4n}}{n^4}

8. (a3b2c4)5\left(\frac{a^3 b^2}{c^4}\right)^5

Distribute the exponent of 5: a15b10c20\frac{a^{15} b^{10}}{c^{20}}

9. (c2d3a4b5)7\left(\frac{c^2 d^3}{a^4 b^5}\right)^7

Distribute the exponent of 7: c14d21a28b35\frac{c^{14} d^{21}}{a^{28} b^{35}}

10. (2m2n33m4n)2\left(\frac{2m^2 n^3}{3m^4 n}\right)^2

Simplify inside the parentheses first: 2m2n33m4n=2n23m2\frac{2m^2 n^3}{3m^4 n} = \frac{2n^2}{3m^2} Now apply the exponent of 2: (2n2)2(3m2)2=4n49m4\frac{(2n^2)^2}{(3m^2)^2} = \frac{4n^4}{9m^4}

11. (7ab38c2d5)2\left(\frac{7ab^3}{8c^2 d^5}\right)^2

Distribute the exponent of 2: 49a2b664c4d10\frac{49a^2 b^6}{64c^4 d^{10}}

12. (5m2n46ab2c)3\left(\frac{5m^2 n^4}{6ab^2 c}\right)^3

Distribute the exponent of 3: 125m6n12216a3b6c3\frac{125m^6 n^{12}}{216a^3 b^6 c^3}

13. (x4)2\left(\frac{-x}{4}\right)^2

Apply the exponent of 2: x216\frac{x^2}{16}

14. (10x52x2)2\left(\frac{10x^5}{2x^2}\right)^2

Simplify inside the parentheses: 10x52x2=5x3\frac{10x^5}{2x^2} = 5x^3 Now apply the exponent of 2: 25x625x^6

15. (a3b6)5\left(\frac{a^3}{b^6}\right)^5

Distribute the exponent of 5: a15b30\frac{a^{15}}{b^{30}}

16. (2a2b3c3x3y2z3)3\left(\frac{2a^2 b^3 c}{3x^3 y^2 z^3}\right)^3

Distribute the exponent of 3: 8a6b9c327x9y6z9\frac{8a^6 b^9 c^3}{27x^9 y^6 z^9}

17. (3a2n24x2n3)2\left(\frac{3a^2 n^2}{4x^2 n^3}\right)^2

Simplify inside the parentheses: 3a2n24x2n3=3a24x2n\frac{3a^2 n^2}{4x^2 n^3} = \frac{3a^2}{4x^2 n} Now apply the exponent of 2: 9a416x4n2\frac{9a^4}{16x^4 n^2}

18. (ab22x3)5\left(\frac{ab^2}{2x^3}\right)^5

Distribute the exponent of 5: a5b1032x15\frac{a^5 b^{10}}{32x^{15}}

19. (x4y5x3y2)7\left(\frac{x^4 y^5}{x^3 y^2}\right)^7

Simplify inside the parentheses: x4y5x3y2=xy3\frac{x^4 y^5}{x^3 y^2} = x y^3 Now apply the exponent of 7: x7y21x^7 y^{21}

20. (2a3b2)3\left(\frac{2a}{3b^2}\right)^3

Distribute the exponent of 3: 8a327b6\frac{8a^3}{27b^6}


If you have any questions or need more details, feel free to ask! Here are five questions related to this problem:

  1. How do you simplify expressions with negative exponents?
  2. What happens if the base inside the parentheses is negative and the exponent is even?
  3. How can you use the power of a quotient rule when the exponents are fractional?
  4. How do you simplify expressions involving zero exponents?
  5. How do you distribute exponents when there are multiple variables in the expression?

Tip: Always simplify inside the parentheses first before applying the exponent outside the parentheses for easier calculation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Exponentiation
Rational Expressions
Exponent Rules

Formulas

Power of a Quotient Rule: (a/b)^n = (a^n)/(b^n)
Simplification of Exponential Expressions: a^m * a^n = a^(m+n)
Negative Exponent Rule: a^(-n) = 1/a^n
Product of Powers Rule: (a^m)^n = a^(m*n)

Theorems

Power of a Quotient Theorem
Exponent Multiplication Theorem
Distributive Property of Exponents

Suitable Grade Level

Grades 9-12