Math Problem Statement

(X^12/81)^(-4/3)×(-x^9/27)(-2/3)×(-x^(-4/5)/4)^-1

Solution

Let's break down and simplify the given expression:

(X1281)43×(x927)23×(x454)1\left(\frac{X^{12}}{81}\right)^{-\frac{4}{3}} \times \left(\frac{-x^9}{27}\right)^{-\frac{2}{3}} \times \left(\frac{-x^{-\frac{4}{5}}}{4}\right)^{-1}

Step 1: Simplify each term.

First term:

(X1281)43=X12×(43)8143=X168143\left(\frac{X^{12}}{81}\right)^{-\frac{4}{3}} = \frac{X^{12 \times \left(-\frac{4}{3}\right)}}{81^{-\frac{4}{3}}} = \frac{X^{-16}}{81^{-\frac{4}{3}}}

Now, simplify 814381^{-\frac{4}{3}}. We know 81=3481 = 3^4, so: 8143=(34)43=316/381^{-\frac{4}{3}} = \left(3^4\right)^{-\frac{4}{3}} = 3^{-16/3} Thus, the first term simplifies to: X163163=X16×3163\frac{X^{-16}}{3^{-\frac{16}{3}}} = X^{-16} \times 3^{\frac{16}{3}}

Second term:

(x927)23=(x9)232723\left(\frac{-x^9}{27}\right)^{-\frac{2}{3}} = \frac{\left(-x^9\right)^{-\frac{2}{3}}}{27^{-\frac{2}{3}}}

Now simplify each part:

  • For the numerator: (x9)23=(1)23x9×(23)=(1)23x6\left(-x^9\right)^{-\frac{2}{3}} = (-1)^{-\frac{2}{3}} x^{9 \times \left(-\frac{2}{3}\right)} = (-1)^{-\frac{2}{3}} x^{-6}
  • For the denominator: 27=3327 = 3^3, so 2723=(33)23=3227^{-\frac{2}{3}} = (3^3)^{-\frac{2}{3}} = 3^{-2}

Thus, the second term becomes: (1)23x632=(1)23x6×32\frac{(-1)^{-\frac{2}{3}} x^{-6}}{3^{-2}} = (-1)^{-\frac{2}{3}} x^{-6} \times 3^2

Third term:

(x454)1=(x45)141\left(\frac{-x^{-\frac{4}{5}}}{4}\right)^{-1} = \frac{(-x^{-\frac{4}{5}})^{-1}}{4^{-1}}

Now simplify each part:

  • For the numerator: (x45)1=(1)1x45=x45(-x^{-\frac{4}{5}})^{-1} = (-1)^{-1} x^{\frac{4}{5}} = -x^{\frac{4}{5}}
  • For the denominator: 41=144^{-1} = \frac{1}{4}

Thus, the third term becomes: 4x45-4x^{\frac{4}{5}}

Step 2: Combine all terms.

Now multiply all the simplified expressions: (X16×3163)×((1)23x6×32)×(4x45)\left(X^{-16} \times 3^{\frac{16}{3}}\right) \times \left((-1)^{-\frac{2}{3}} x^{-6} \times 3^2\right) \times \left(-4 x^{\frac{4}{5}}\right)

Combine powers of xx and constants:

  • For xx: X16X^{-16} is separate from xx, and for xx, we have powers: 6+45-6 + \frac{4}{5}.
  • For constants: Combine powers of 33 and other numbers.

Let me simplify the powers and the constants further.

After simplifying the given expression, the result is:

12616.80X16x0.8-12616.80 \cdot X^{-16} \cdot x^{0.8}

This simplifies further to: 12616.80X16x45-12616.80 \cdot X^{-16} \cdot x^{\frac{4}{5}}

Thus, the final simplified expression is:

12616.80X16x45-12616.80 \cdot X^{-16} \cdot x^{\frac{4}{5}}

Would you like more details or have any questions?

Here are some related questions you could explore:

  1. What is the meaning of fractional exponents like x45x^{\frac{4}{5}}?
  2. How do negative exponents affect an expression?
  3. What is the process to simplify terms with the same base but different powers?
  4. How do constants behave during exponentiation when fractional powers are involved?
  5. Can this result be interpreted geometrically or in real-world applications?

Tip: Always handle negative exponents carefully, as they often represent reciprocal operations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Exponents
Negative Exponents
Fractional Exponents

Formulas

a^m / a^n = a^(m-n)
(a^m)^n = a^(m*n)
(a/b)^m = a^m / b^m
Simplification of negative and fractional exponents

Theorems

Laws of Exponents
Simplification of Fractional Exponents

Suitable Grade Level

Grades 9-12