Math Problem Statement

(-27)^2/3 (4)^-5/2

Solution

Let's evaluate the given expression step by step:

Expression:

(27)23(4)52\frac{(-27)^{\frac{2}{3}}}{(4)^{-\frac{5}{2}}}


Step 1: Simplify (27)23(-27)^{\frac{2}{3}}

  • The fractional exponent 23\frac{2}{3} means:
    • Cube root first (13\frac{1}{3}).
    • Then square the result (23\frac{2}{3}).

(27)13=3(since the cube root of -27 is -3)(-27)^{\frac{1}{3}} = -3 \quad \text{(since the cube root of -27 is -3)} (3)2=9(-3)^2 = 9 Thus, (27)23=9(-27)^{\frac{2}{3}} = 9.


Step 2: Simplify (4)52(4)^{-\frac{5}{2}}

  • The fractional exponent 52-\frac{5}{2} means:
    • Take the reciprocal (because of the negative sign).
    • Find the square root (12\frac{1}{2}).
    • Then raise the result to the power of 5.

412=4=24^{\frac{1}{2}} = \sqrt{4} = 2 452=125=1324^{-\frac{5}{2}} = \frac{1}{2^5} = \frac{1}{32}


Step 3: Simplify the division:

(27)23(4)52=9132\frac{(-27)^{\frac{2}{3}}}{(4)^{-\frac{5}{2}}} = \frac{9}{\frac{1}{32}} Dividing by a fraction is the same as multiplying by its reciprocal: 9132=932=288\frac{9}{\frac{1}{32}} = 9 \cdot 32 = 288


Final Answer:

288\boxed{288}

Let me know if you'd like more clarification! 😊
Here are five related questions for practice:

  1. Simplify (64)23(8)13(64)^{\frac{2}{3}} \cdot (8)^{-\frac{1}{3}}.
  2. Evaluate (16)34(-16)^{\frac{3}{4}}.
  3. Simplify (125)43(125)^{\frac{4}{3}}.
  4. Solve (8)23(9)12\frac{(-8)^{\frac{2}{3}}}{(9)^{-\frac{1}{2}}}.
  5. Expand (x3y2)13(x^3 y^{-2})^{\frac{1}{3}}.

Tip: For fractional exponents, always apply root and power sequentially to simplify operations effectively.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents and Powers
Fractional Exponents
Simplifying Expressions
Negative Exponents

Formulas

a^(m/n) = (a^(1/n))^m
a^(-n) = 1/a^n
a^(m) / a^(n) = a^(m-n)

Theorems

Laws of Exponents

Suitable Grade Level

Grades 9-12