Math Problem Statement

3a, 7/21+9/-36 b, -3/29+16/58 -6/13+[1+-7/13] d, 5/17+-9/15+-2/17+2/-5 4a, 4/13+-12/39 b-8/18+-15/27 c, -7/31+[99+7/31] d-1/2+7/21+-2/6+-5/30

Solution

Let's break down each of these expressions and simplify them one by one.

1. Expression for a:

3a,721+9363a, \quad \frac{7}{21} + \frac{9}{-36} Simplify the fractions: 721=13,936=14\frac{7}{21} = \frac{1}{3}, \quad \frac{9}{-36} = \frac{-1}{4} So, the expression becomes: 13+14\frac{1}{3} + \frac{-1}{4} To add these, find a common denominator (12): 13=412,14=312\frac{1}{3} = \frac{4}{12}, \quad \frac{-1}{4} = \frac{-3}{12} Now, add the fractions: 412+312=112\frac{4}{12} + \frac{-3}{12} = \frac{1}{12}

2. Expression for b:

b,329+1658b, \quad \frac{-3}{29} + \frac{16}{58} Note that 1658\frac{16}{58} can be simplified: 1658=829\frac{16}{58} = \frac{8}{29} So, the expression becomes: 329+829\frac{-3}{29} + \frac{8}{29} Now, add the fractions: 3+829=529\frac{-3 + 8}{29} = \frac{5}{29}

3. Expression for -6/13 + [1 + -7/13]:

613+(1+713)\frac{-6}{13} + \left(1 + \frac{-7}{13}\right) Simplify inside the parentheses: 1+713=1313713=6131 + \frac{-7}{13} = \frac{13}{13} - \frac{7}{13} = \frac{6}{13} Now, add: 613+613=0\frac{-6}{13} + \frac{6}{13} = 0

4. Expression for d:

517+915+217+25\frac{5}{17} + \frac{-9}{15} + \frac{-2}{17} + \frac{2}{-5} Simplify step-by-step:

  • 915=35\frac{-9}{15} = \frac{-3}{5}
  • 517217=317\frac{5}{17} - \frac{2}{17} = \frac{3}{17}

Now, the expression becomes: 317+35+25\frac{3}{17} + \frac{-3}{5} + \frac{2}{-5} Combine the fractions involving 5: 35+25=55=1\frac{-3}{5} + \frac{-2}{5} = \frac{-5}{5} = -1 Now, the expression is: 3171\frac{3}{17} - 1 Write 1 as 1717\frac{17}{17}, and subtract: 3171717=1417\frac{3}{17} - \frac{17}{17} = \frac{-14}{17}

5. Expression for 4a:

413+1239\frac{4}{13} + \frac{-12}{39} Simplify 1239\frac{-12}{39}: 1239=413\frac{-12}{39} = \frac{-4}{13} Now, add the fractions: 413+413=0\frac{4}{13} + \frac{-4}{13} = 0

6. Expression for b:

818+1527\frac{-8}{18} + \frac{-15}{27} Simplify: 818=49,1527=59\frac{-8}{18} = \frac{-4}{9}, \quad \frac{-15}{27} = \frac{-5}{9} Now, add the fractions: 49+59=99=1\frac{-4}{9} + \frac{-5}{9} = \frac{-9}{9} = -1

7. Expression for c:

731+(99+731)\frac{-7}{31} + \left(99 + \frac{7}{31}\right) Simplify inside the parentheses: 99+731=306931+731=30763199 + \frac{7}{31} = \frac{3069}{31} + \frac{7}{31} = \frac{3076}{31} Now, subtract: 731+307631=3076731=306931=99\frac{-7}{31} + \frac{3076}{31} = \frac{3076 - 7}{31} = \frac{3069}{31} = 99

8. Expression for d:

12+721+26+530\frac{-1}{2} + \frac{7}{21} + \frac{-2}{6} + \frac{-5}{30} Simplify the fractions: 721=13,26=13,530=16\frac{7}{21} = \frac{1}{3}, \quad \frac{-2}{6} = \frac{-1}{3}, \quad \frac{-5}{30} = \frac{-1}{6} Now, add them step-by-step: 12+13=36+26=16\frac{-1}{2} + \frac{1}{3} = \frac{-3}{6} + \frac{2}{6} = \frac{-1}{6} 16+13=16+26=36=12\frac{-1}{6} + \frac{-1}{3} = \frac{-1}{6} + \frac{-2}{6} = \frac{-3}{6} = \frac{-1}{2} 12+16=36+16=46=23\frac{-1}{2} + \frac{-1}{6} = \frac{-3}{6} + \frac{-1}{6} = \frac{-4}{6} = \frac{-2}{3}

Final Results:

  • a: 112\frac{1}{12}
  • b: 529\frac{5}{29}
  • -6/13 + [1 + -7/13]: 00
  • d: 1417\frac{-14}{17}
  • 4a: 00
  • b: 1-1
  • c: 9999
  • d: 23\frac{-2}{3}

Would you like further explanations for any of these steps, or have any questions about the solutions?

Related Questions:

  1. How to simplify expressions with common denominators?
  2. What is the process for handling mixed fractions in calculations?
  3. How do you deal with negative fractions in addition or subtraction?
  4. What’s the best approach for simplifying complex rational expressions?
  5. How to find the least common denominator for multiple fractions?

Tip: When adding or subtracting fractions, always look for the least common denominator to make the process easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fraction Addition and Subtraction
Simplifying Fractions
Common Denominators
Mixed Fractions

Formulas

Addition of Fractions
Simplification of Fractions
Finding Common Denominator

Theorems

Fraction Simplification Theorem
Common Denominator Theorem

Suitable Grade Level

Grades 6-8