Math Problem Statement

Solve the expressions: (a) (ab / 2a)^3 and (b) (18a^2b^(-2))^2 / 12ab.

Solution

Let's solve the two parts of the given question step by step:

Part 4.a:

Expression: (ab2a)3\left(\frac{ab}{2a}\right)^3

  1. Simplify the fraction inside the parentheses: ab2a=ab2a=b2\frac{ab}{2a} = \frac{a \cdot b}{2 \cdot a} = \frac{b}{2}

  2. Now cube the simplified expression: (b2)3=b323=b38\left(\frac{b}{2}\right)^3 = \frac{b^3}{2^3} = \frac{b^3}{8}

Thus, the result for part 4.a is: b38\frac{b^3}{8}


Part 4.b:

Expression: (18a2b2)212ab\frac{(18a^2b^{-2})^2}{12ab}

  1. First, simplify the square of the numerator: (18a2b2)2=182(a2)2(b2)2=324a4b4(18a^2b^{-2})^2 = 18^2 \cdot (a^2)^2 \cdot (b^{-2})^2 = 324 \cdot a^4 \cdot b^{-4} So the numerator becomes: 324a4b4324a^4b^{-4}

  2. Now, simplify the denominator: 12ab=12ab12ab = 12 \cdot a \cdot b

  3. Combine the numerator and denominator: 324a4b412ab=32412a4ab4b\frac{324a^4b^{-4}}{12ab} = \frac{324}{12} \cdot \frac{a^4}{a} \cdot \frac{b^{-4}}{b}

  4. Simplify further: 32412=27,a4a=a3,b4b=b5\frac{324}{12} = 27, \quad \frac{a^4}{a} = a^3, \quad \frac{b^{-4}}{b} = b^{-5}

Thus, the result for part 4.b is: 27a3b527a^3b^{-5}


Final Answers:

  • 4.a: b38\frac{b^3}{8}
  • 4.b: 27a3b527a^3b^{-5}

Do you want further details or have any questions?


Here are 5 related questions to expand your understanding:

  1. How do you handle negative exponents when simplifying expressions?
  2. Can you simplify an expression like (2x23y)2\left(\frac{2x^2}{3y}\right)^2?
  3. What happens when you cube a fraction where both the numerator and denominator are polynomials?
  4. How do you simplify an expression with a complex denominator, such as a3b4ab2\frac{a^3b}{4ab^2}?
  5. What are the rules for combining like terms when simplifying algebraic expressions?

Tip: When simplifying expressions, always start by reducing the fraction (if possible) before applying any exponents to make calculations easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Exponents
Simplifying Algebraic Fractions
Negative Exponents

Formulas

Exponentiation: (x^m)^n = x^(mn)
Fractional Simplification: (a * b) / a = b
Negative Exponents: x^(-m) = 1 / x^m

Theorems

Exponent Rules
Fraction Simplification

Suitable Grade Level

Grades 9-12