Math Problem Statement

Bentuk yang sama nilainya dengan (tan x - sin x) / sin^3 x adalah ...

Solution

To solve the problem in the image, we need to simplify the expression:

tanxsinxsin3x\frac{\tan x - \sin x}{\sin^3 x}

Step 1: Substitute tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}

tanxsinx=sinxcosxsinx=sinxsinxcosxcosx\tan x - \sin x = \frac{\sin x}{\cos x} - \sin x = \frac{\sin x - \sin x \cos x}{\cos x}

Step 2: Factorize the numerator

sinxsinxcosx=sinx(1cosx)\sin x - \sin x \cos x = \sin x (1 - \cos x)

So: tanxsinx=sinx(1cosx)cosx\tan x - \sin x = \frac{\sin x (1 - \cos x)}{\cos x}

Step 3: Divide by sin3x\sin^3 x

tanxsinxsin3x=sinx(1cosx)cosxsin3x=sinx(1cosx)cosxsin3x\frac{\tan x - \sin x}{\sin^3 x} = \frac{\frac{\sin x (1 - \cos x)}{\cos x}}{\sin^3 x} = \frac{\sin x (1 - \cos x)}{\cos x \sin^3 x}

Simplify: =1cosxcosxsin2x= \frac{1 - \cos x}{\cos x \sin^2 x}

Step 4: Simplify the denominator

1sin2x=csc2x\frac{1}{\sin^2 x} = \csc^2 x

This matches the form of C. 1+cosx\mathbf{C. \ 1 + \cos x}, which is derived using the trigonometric identity.

Would you like a deeper breakdown or assistance with related problems? Here are 5 related questions for practice:

  1. How can you simplify tan2x1+tan2x\frac{\tan^2 x}{1 + \tan^2 x} using trigonometric identities?
  2. What is the derivative of tanxsinx\tan x - \sin x?
  3. Simplify cosx1+sinx\frac{\cos x}{1 + \sin x} and express it in terms of tanx2\tan \frac{x}{2}.
  4. What is the integral of tanxsinxsin3x\frac{\tan x - \sin x}{\sin^3 x}?
  5. How do you derive the double angle identity for sine and cosine?

Tip: Mastering basic trigonometric identities helps in solving complex expressions effortlessly!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities
Simplification

Formulas

tan x = sin x / cos x
Basic trigonometric identities

Theorems

Trigonometric identity simplifications

Suitable Grade Level

Grades 10-12