Math Problem Statement

Use the fundamental identities and appropriate algebraic operations to simplify the expression.

StartFraction 1 Over 1 minus sine x EndFraction minus StartFraction 1 Over 1 plus sine x EndFraction11−sin x−11+sin x

Question content area bottom

Part 1

Choose the correct answer below.

Solution

To simplify the expression

11sinx11+sinx\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x}

we can follow these steps:

Step 1: Find a Common Denominator

The common denominator for the two fractions is (1sinx)(1+sinx)(1 - \sin x)(1 + \sin x).

Step 2: Rewrite Each Fraction with the Common Denominator

Using the common denominator, we have:

11sinx=1+sinx(1sinx)(1+sinx)\frac{1}{1 - \sin x} = \frac{1 + \sin x}{(1 - \sin x)(1 + \sin x)} 11+sinx=1sinx(1sinx)(1+sinx)\frac{1}{1 + \sin x} = \frac{1 - \sin x}{(1 - \sin x)(1 + \sin x)}

Step 3: Substitute and Simplify the Expression

Now, we can rewrite the expression as:

11sinx11+sinx=1+sinx(1sinx)(1+sinx)1sinx(1sinx)(1+sinx)\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} = \frac{1 + \sin x}{(1 - \sin x)(1 + \sin x)} - \frac{1 - \sin x}{(1 - \sin x)(1 + \sin x)}

Combine the fractions:

=(1+sinx)(1sinx)(1sinx)(1+sinx)= \frac{(1 + \sin x) - (1 - \sin x)}{(1 - \sin x)(1 + \sin x)}

Step 4: Simplify the Numerator

Expand the terms in the numerator:

=1+sinx1+sinx(1sinx)(1+sinx)= \frac{1 + \sin x - 1 + \sin x}{(1 - \sin x)(1 + \sin x)}

Combine like terms in the numerator:

=2sinx(1sinx)(1+sinx)= \frac{2 \sin x}{(1 - \sin x)(1 + \sin x)}

Step 5: Apply the Difference of Squares in the Denominator

Using the identity (1sinx)(1+sinx)=1sin2x(1 - \sin x)(1 + \sin x) = 1 - \sin^2 x, rewrite the denominator:

=2sinx1sin2x= \frac{2 \sin x}{1 - \sin^2 x}

Step 6: Use the Pythagorean Identity

Recall that 1sin2x=cos2x1 - \sin^2 x = \cos^2 x. Substitute this in:

=2sinxcos2x= \frac{2 \sin x}{\cos^2 x}

Step 7: Separate the Terms

Rewrite the expression as:

=2sinxcos2x=2sinxcosx1cosx= 2 \frac{\sin x}{\cos^2 x} = 2 \cdot \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x}

Step 8: Simplify Using Trigonometric Identities

Now, use sinxcosx=tanx\frac{\sin x}{\cos x} = \tan x and 1cosx=secx\frac{1}{\cos x} = \sec x:

=2tanxsecx= 2 \tan x \sec x

Final Answer:

11sinx11+sinx=2tanxsecx\frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} = 2 \tan x \sec x


Would you like more details on any steps?


5 Related Questions:

  1. How would you simplify 11cosx11+cosx\frac{1}{1 - \cos x} - \frac{1}{1 + \cos x}?
  2. What is the trigonometric identity for sin2x+cos2x\sin^2 x + \cos^2 x?
  3. How can you express tanxsecx\tan x \sec x in terms of sinx\sin x and cosx\cos x?
  4. How would the expression change if we used cotx\cot x instead of tanx\tan x?
  5. Can this technique be applied to simplify 11tanx11+tanx\frac{1}{1 - \tan x} - \frac{1}{1 + \tan x}?

Tip:

When simplifying trigonometric expressions, using common identities (like Pythagorean and reciprocal identities) can make complex expressions much easier to work with.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Simplification of Trigonometric Expressions

Formulas

Difference of squares: (a - b)(a + b) = a^2 - b^2
Pythagorean identity: 1 - sin^2 x = cos^2 x
Quotient identity: tan x = sin x / cos x
Reciprocal identity: sec x = 1 / cos x

Theorems

Pythagorean Theorem (in trigonometric form)

Suitable Grade Level

Grades 10-12