Math Problem Statement

sin(π 2 − x) + cos(−x) + sin(2π − x) + cos(π 2 − x)

cos(π 2

  • x) + sin(−x)

Solution

The given expression can be simplified step by step by applying trigonometric identities. Let's break it down and simplify:

Expression:

sin(π2x)+cos(x)+sin(2πx)+cos(π2x)cos(π2+x)+sin(x)\frac{\sin\left(\frac{\pi}{2} - x\right) + \cos(-x) + \sin(2\pi - x) + \cos\left(\frac{\pi}{2} - x\right)}{\cos\left(\frac{\pi}{2} + x\right) + \sin(-x)}

Step 1: Apply trigonometric identities

  • sin(π2x)=cos(x)\sin\left(\frac{\pi}{2} - x\right) = \cos(x) (co-function identity)
  • \cos(-x) = \cos(x) (cosine is even)
  • \sin(2\pi - x) = -\sin(x)) (periodic identity of sine)
  • \cos\left(\frac{\pi}{2} - x\right) = \sin(x)) (co-function identity)
  • \cos\left(\frac{\pi}{2} + x\right) = -\sin(x)) (co-function identity)
  • \sin(-x) = -\sin(x) (sine is odd)

Step 2: Substitute these identities into the expression

Numerator:

sin(π2x)+cos(x)+sin(2πx)+cos(π2x)\sin\left(\frac{\pi}{2} - x\right) + \cos(-x) + \sin(2\pi - x) + \cos\left(\frac{\pi}{2} - x\right)

becomes

cos(x)+cos(x)sin(x)+sin(x)\cos(x) + \cos(x) - \sin(x) + \sin(x)

Simplifying this:

2cos(x)2\cos(x)

Denominator:

cos(π2+x)+sin(x)\cos\left(\frac{\pi}{2} + x\right) + \sin(-x)

becomes

sin(x)sin(x)-\sin(x) - \sin(x)

Simplifying this:

2sin(x)-2\sin(x)

Step 3: Final expression

2cos(x)2sin(x)=cot(x)\frac{2\cos(x)}{-2\sin(x)} = -\cot(x)

Final Answer:

cot(x)-\cot(x)

Would you like more details or have any questions?


Here are 5 follow-up questions you might explore:

  1. What is the

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities

Formulas

sin(π/2 − x) = cos(x)
cos(-x) = cos(x)
sin(2π − x) = -sin(x)
cos(π/2 + x) = -sin(x)
sin(-x) = -sin(x)

Theorems

Co-function Identities
Even-Odd Trigonometric Functions
Periodic Trigonometric Functions

Suitable Grade Level

Grade 10-12