Math Problem Statement

Write the following expressions in terms of simple trigonometric functions: cosec(-x), cot(-x), cos(-x), sin(π/2 + x), cos(π - x), tan(π/2 - x).

Solution

Here is the solution for the given expressions written in terms of simple trigonometric functions:

a. cosec(x)\text{cosec}(-x)

Using the property cosec(x)=cosec(x)\text{cosec}(-x) = -\text{cosec}(x), we have: cosec(x)=cosec(x)\text{cosec}(-x) = -\text{cosec}(x)

b. cot(x)\text{cot}(-x)

Using the property cot(x)=cot(x)\text{cot}(-x) = -\text{cot}(x), we have: cot(x)=cot(x)\text{cot}(-x) = -\text{cot}(x)

c. cos(x)\cos(-x)

Using the property cos(x)=cos(x)\cos(-x) = \cos(x), we have: cos(x)=cos(x)\cos(-x) = \cos(x)

d. sin(π2+x)\sin\left(\frac{\pi}{2} + x\right)

Using the property sin(π2+x)=cos(x)\sin\left(\frac{\pi}{2} + x\right) = \cos(x), we have: sin(π2+x)=cos(x)\sin\left(\frac{\pi}{2} + x\right) = \cos(x)

e. cos(πx)\cos(\pi - x)

Using the property cos(πx)=cos(x)\cos(\pi - x) = -\cos(x), we have: cos(πx)=cos(x)\cos(\pi - x) = -\cos(x)

f. tan(π2x)\tan\left(\frac{\pi}{2} - x\right)

Using the property tan(π2x)=cot(x)\tan\left(\frac{\pi}{2} - x\right) = \cot(x), we have: tan(π2x)=cot(x)\tan\left(\frac{\pi}{2} - x\right) = \cot(x)

Let me know if you want further clarification or have any specific questions about these identities!


Follow-up questions for better understanding:

  1. Why does the sine function change to cosine in the expression sin(π2+x)\sin\left(\frac{\pi}{2} + x\right)?
  2. How do the even/odd properties of trigonometric functions affect these transformations?
  3. Can you derive the identity for tan(π2x)\tan\left(\frac{\pi}{2} - x\right) using the sine and cosine ratio?
  4. Why does cos(x)\cos(-x) remain unchanged, while cot(x)\text{cot}(-x) changes sign?
  5. How can these properties be used in solving equations involving multiple angles?

Tip: Always remember the quadrant system when dealing with trigonometric transformations; it helps in determining signs and relationships of the functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Even and Odd Functions
Co-Function Identities

Formulas

cosec(-x) = -cosec(x)
cot(-x) = -cot(x)
cos(-x) = cos(x)
sin(π/2 + x) = cos(x)
cos(π - x) = -cos(x)
tan(π/2 - x) = cot(x)

Theorems

Even-Odd Properties of Trigonometric Functions
Co-Function Identities

Suitable Grade Level

Grades 11-12