Math Problem Statement

Simplify the following radicals: 1. \( \sqrt[3]{\frac{27x^9y^3}{125x^6y^5}} \) 2. \( \sqrt[3]{64m^3n^9} \) 3. \( \sqrt[3]{20a^{15}b^{24}c^7} \) 4. \( \sqrt[4]{\frac{48x^{15}y^5z^3}{2050x^{18}}} \cdot 2\left(\sqrt[4]{\frac{16x^8}{y^{12}z^9}}\right) \) 5. \( \frac{\sqrt[5]{625m^6n^{10}}}{\sqrt[7]{27m^{21}}} \cdot 4m^3n^4 \)

Solution

I have reviewed the image, and it contains five radical expressions to simplify. Let's go through them step by step:

  1. 27x9y3125x6y53\sqrt[3]{\frac{27x^9y^3}{125x^6y^5}}

  2. 64m3n93\sqrt[3]{64m^3n^9}

  3. 20a15b24c73\sqrt[3]{20a^{15}b^{24}c^7}

  4. 48x15y5z32050x1842(16x8y12z94)\sqrt[4]{\frac{48x^{15}y^5z^3}{2050x^{18}}} \cdot 2\left(\sqrt[4]{\frac{16x^8}{y^{12}z^9}}\right)

  5. 625m6n10527m2174m3n4\frac{\sqrt[5]{625m^6n^{10}}}{\sqrt[7]{27m^{21}}} \cdot 4m^3n^4

Let me simplify each expression for you.

1. 27x9y3125x6y53\sqrt[3]{\frac{27x^9y^3}{125x^6y^5}}

  • Simplify the constants: 27125=(35)3\frac{27}{125} = \left(\frac{3}{5}\right)^3
  • Exponents of xx: x9x6=x3\frac{x^9}{x^6} = x^3
  • Exponents of yy: y3y5=y2\frac{y^3}{y^5} = y^{-2}

Now take the cube root: 35xy23\frac{3}{5} x y^{-\frac{2}{3}}

2. 64m3n93\sqrt[3]{64m^3n^9}

  • 64=4364 = 4^3
  • Cube root of m3m^3 and n9n^9: 64m3n93=4mn3\sqrt[3]{64m^3n^9} = 4mn^3

3. 20a15b24c73\sqrt[3]{20a^{15}b^{24}c^7}

  • Split constants: 20=22×520 = 2^2 \times 5
  • Cube root of a15=a5a^{15} = a^5 and b24=b8b^{24} = b^8, while c7c^7 remains c73c^{\frac{7}{3}}.

Result: 2a5b8c732a^5b^8c^{\frac{7}{3}}

4. 48x15y5z32050x1842(16x8y12z94)\sqrt[4]{\frac{48x^{15}y^5z^3}{2050x^{18}}} \cdot 2\left(\sqrt[4]{\frac{16x^8}{y^{12}z^9}}\right)

Simplify the first term:

  • Divide x15/x18=x3x^{15} / x^{18} = x^{-3}.
  • Leave the rest: 48y5z32050\frac{48y^5z^3}{2050}

Apply the 4th root:

  • 48/2050=24102548/2050 = \frac{24}{1025}, which doesn't simplify much.
  • Exponents: y5/4z3/4x3/4y^{5/4} z^{3/4} \cdot x^{-3/4}

Now, simplify the second term:

  • 16x84=2x2\sqrt[4]{16x^8} = 2x^2
  • y12z94=y3z9/4\sqrt[4]{y^{12}z^9} = y^3z^{9/4}

Multiply both results.

5. 625m6n10527m2174m3n4\frac{\sqrt[5]{625m^6n^{10}}}{\sqrt[7]{27m^{21}}} \cdot 4m^3n^4

  • 6255=5\sqrt[5]{625} = 5, and 277=3\sqrt[7]{27} = 3.
  • For mm, simplify: m6m21/7=m63=m3\frac{m^6}{m^{21/7}} = m^{6 - 3} = m^3.
  • For nn, simplify: n2n^2.

Multiply by 4m3n44m^3n^4: Result: 5m6n63\frac{5m^6n^6}{3}.

Do you want any steps clarified or expanded? Here are 5 related questions:

  1. How do we handle fractional exponents when simplifying radicals?
  2. How does the cube root affect powers of variables like x9x^9?
  3. What happens when dividing exponents with the same base?
  4. How do fourth roots work when multiplying radical expressions?
  5. Can complex radicals be simplified using factorization?

Tip: Always factor constants and variables before applying roots; this simplifies the process!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Radicals
Simplification of Radicals
Exponents
Roots
Algebra

Formulas

n-th root of a fraction: \( \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \)
n-th root of a product: \( \sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b} \)
Simplifying expressions with exponents: \( a^{m}/a^{n} = a^{m-n} \)

Theorems

Properties of Exponents
Properties of Radicals

Suitable Grade Level

Grades 10-12