Math Problem Statement

Simplify the given radical expressions.

Solution

Let me help you simplify the expressions from the image. I'll go through each one by one:

1) 4964 \sqrt{96}

To simplify: 96=16×6=46\sqrt{96} = \sqrt{16 \times 6} = 4\sqrt{6} Thus, 496=4×46=1664\sqrt{96} = 4 \times 4\sqrt{6} = 16\sqrt{6} So, the correct answer is B) 166\sqrt{6}.

2) 3453 \sqrt{45}

To simplify: 45=9×5=35\sqrt{45} = \sqrt{9 \times 5} = 3\sqrt{5} Thus, 345=3×35=953\sqrt{45} = 3 \times 3\sqrt{5} = 9\sqrt{5} So, the correct answer is C) 95\sqrt{5}.

3) 27\sqrt{27}

To simplify: 27=9×3=33\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}

4) 100\sqrt{100}

100=10\sqrt{100} = 10

5) 26262\sqrt{6} - 2\sqrt{6}

This is straightforward: 2626=02\sqrt{6} - 2\sqrt{6} = 0

6) 23+2122\sqrt{3} + 2\sqrt{12}

To simplify 12\sqrt{12}: 12=4×3=23\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3} Thus: 23+212=23+2×23=23+43=632\sqrt{3} + 2\sqrt{12} = 2\sqrt{3} + 2 \times 2\sqrt{3} = 2\sqrt{3} + 4\sqrt{3} = 6\sqrt{3}

7) 33312+33-3\sqrt{3} - 3\sqrt{12} + 3\sqrt{3}

Simplifying the middle term: 12=23\sqrt{12} = 2\sqrt{3} Thus: 333×23+33=3363+33-3\sqrt{3} - 3 \times 2\sqrt{3} + 3\sqrt{3} = -3\sqrt{3} - 6\sqrt{3} + 3\sqrt{3} =(36+3)3=63= (-3 - 6 + 3)\sqrt{3} = -6\sqrt{3}

8) 224+26262\sqrt{24} + 2\sqrt{6} - 2\sqrt{6}

Simplifying 24\sqrt{24}: 24=4×6=26\sqrt{24} = \sqrt{4 \times 6} = 2\sqrt{6} Thus: 224+2626=2×26+26262\sqrt{24} + 2\sqrt{6} - 2\sqrt{6} = 2 \times 2\sqrt{6} + 2\sqrt{6} - 2\sqrt{6} =46+2626=46= 4\sqrt{6} + 2\sqrt{6} - 2\sqrt{6} = 4\sqrt{6}

9) 106\sqrt{10} \cdot \sqrt{6}

Using the multiplication property of square roots: 106=10×6=60\sqrt{10} \cdot \sqrt{6} = \sqrt{10 \times 6} = \sqrt{60}

10) 1036\sqrt{10} \cdot 3\sqrt{6}

To simplify: 1036=310×6=360\sqrt{10} \cdot 3\sqrt{6} = 3 \cdot \sqrt{10 \times 6} = 3\sqrt{60}

11) 65\sqrt{6} \cdot \sqrt{5}

Using the multiplication property of square roots: 65=6×5=30\sqrt{6} \cdot \sqrt{5} = \sqrt{6 \times 5} = \sqrt{30}

12) 5(2+6)\sqrt{5} (\sqrt{2} + \sqrt{6})

Distribute 5\sqrt{5}: 5(2+6)=52+56=10+30\sqrt{5} (\sqrt{2} + \sqrt{6}) = \sqrt{5} \cdot \sqrt{2} + \sqrt{5} \cdot \sqrt{6} = \sqrt{10} + \sqrt{30}

13) 1625\frac{\sqrt{16}}{\sqrt{25}}

Simplify both square roots: 1625=45\frac{\sqrt{16}}{\sqrt{25}} = \frac{4}{5}

14) 16525\frac{\sqrt{16}}{5\sqrt{25}}

Simplify both square roots: 16525=45×5=425\frac{\sqrt{16}}{5\sqrt{25}} = \frac{4}{5 \times 5} = \frac{4}{25}


Would you like any further clarification on these steps or details on any specific problem? Here are some related questions you might want to explore:

  1. How do you simplify square roots that involve multiplication?
  2. What is the general property of square roots when it comes to division?
  3. How do you distribute square roots in expressions like question 12?
  4. Can all square roots be simplified, and if not, why?
  5. What are some common mistakes to avoid when simplifying radical expressions?

Tip: When simplifying radicals, always check if the number under the square root has any perfect square factors (e.g., 4, 9, 16, etc.) to simplify the process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplification of Radicals
Square Roots
Algebra

Formulas

√(a × b) = √a × √b
a√b ± c√b = (a ± c)√b
√(a²) = a

Theorems

Multiplication Property of Radicals
Distributive Property
Square Root Simplification

Suitable Grade Level

Grades 9-10