Math Problem Statement

-25–√ - 45−−√ + 125−−−√.

Solution

Let's evaluate the given expression step by step:

The expression is:

2545+125-\sqrt{25} - \sqrt{45} + \sqrt{125}

Step 1: Evaluate each square root

  1. 25=5\sqrt{25} = 5
  2. Simplify 45\sqrt{45}:
    45=95=95=35\sqrt{45} = \sqrt{9 \cdot 5} = \sqrt{9} \cdot \sqrt{5} = 3\sqrt{5}
  3. Simplify 125\sqrt{125}:
    125=255=255=55\sqrt{125} = \sqrt{25 \cdot 5} = \sqrt{25} \cdot \sqrt{5} = 5\sqrt{5}

Step 2: Substitute these values into the expression

2545+125=535+55-\sqrt{25} - \sqrt{45} + \sqrt{125} = -5 - 3\sqrt{5} + 5\sqrt{5}

Step 3: Combine like terms

  1. Combine 35+55-3\sqrt{5} + 5\sqrt{5}:
    35+55=25-3\sqrt{5} + 5\sqrt{5} = 2\sqrt{5}
  2. Add the constant term: 5+25-5 + 2\sqrt{5}

Final Answer:

5+25-5 + 2\sqrt{5}

This is the simplified form of the expression.


Would you like a breakdown of the simplification steps or additional clarification?

Here are 5 related questions to practice:

  1. Simplify 72+50\sqrt{72} + \sqrt{50}.
  2. Evaluate 16+8164-\sqrt{16} + \sqrt{81} - \sqrt{64}.
  3. Simplify 345220+453\sqrt{45} - 2\sqrt{20} + 4\sqrt{5}.
  4. Rationalize the denominator of 12\frac{1}{\sqrt{2}}.
  5. Expand and simplify (23+5)2(2\sqrt{3} + 5)^2.

Tip: Always look for perfect squares within a radical to simplify square roots easily.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Square Roots
Radicals
Simplification of Expressions

Formulas

Square root of perfect squares
Simplifying square roots using factorization

Theorems

Properties of square roots
Combining like terms

Suitable Grade Level

Grades 6-8