Math Problem Statement

Jika a ≠ 0, maka (-2a)^3(2a) / (16a^4)^(1/3) = ?

Solution

The problem provided is:

Jika a0, maka (2a)3(2a)(16a4)13=\text{Jika } a \neq 0, \text{ maka } \frac{(-2a)^3 \cdot (2a)}{(16a^4)^{\frac{1}{3}}} = \dots

Step-by-Step Solution:

  1. Simplify the numerator: (2a)3=(2)3a3=8a3(-2a)^3 = (-2)^3 \cdot a^3 = -8a^3 So the numerator becomes: (8a3)(2a)=8a32a=16a4(-8a^3) \cdot (2a) = -8a^3 \cdot 2a = -16a^4

  2. Simplify the denominator: (16a^4)^{\frac{1}{3}} = 16^{\frac{1}{3}} \cdot (a^4)^{\frac{1}{3}} = 2^4^{\frac{1}{3}} \cdot a^{\frac{4}{3}} = 2a^{\frac{4}{3}}

  3. Put everything together: Now the expression becomes: 16a42a43\frac{-16a^4}{2a^{\frac{4}{3}}}

  4. Simplify the expression: Divide the constants: 162=8\frac{-16}{2} = -8 For the exponents of aa: a4/a43=a443=a12343=a83a^4 / a^{\frac{4}{3}} = a^{4 - \frac{4}{3}} = a^{\frac{12}{3} - \frac{4}{3}} = a^{\frac{8}{3}}

  5. Final answer: 8a83-8a^{\frac{8}{3}}

Thus, the simplified expression is:

8a83\boxed{-8a^{\frac{8}{3}}}

Would you like further clarification or details on any step?

Related Questions:

  1. What are the rules for exponents when dividing terms with the same base?
  2. How do we simplify expressions raised to fractional exponents?
  3. Can this method be applied to negative bases in general?
  4. How does the value of aa (if negative) affect the final result?
  5. What is the cube root of a number, and how is it used here?

Tip:

When simplifying expressions with exponents, remember that you subtract the exponents when dividing powers with the same base.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponentiation
Algebraic Simplification
Fractional Exponents

Formulas

(x^m) / (x^n) = x^(m-n)
(a^b)^c = a^(bc)

Theorems

Properties of Exponents
Cube Root Theorem

Suitable Grade Level

Grades 9-10