Math Problem Statement

Simplify the expression \( \frac{ \left(9^{\frac{2}{3}} \times 6^{\frac{5}{3}}\right) }{ 2^{\frac{1}{3}} \sqrt[3]{9} \times 3^{\frac{1}{3}} \sqrt[3]{2} } \)

Solution

To solve the expression shown in the image, we’ll go through it step by step. The expression can be interpreted as follows:

[ \frac{\left(9^{\frac{2}{3}} \times 6^{\frac{5}{3}}\right)}{2^{\frac{1}{3}} \sqrt[3]{9} \times 3^{\frac{1}{3}} \sqrt[3]{2}} ]

Let’s simplify each part individually.

Step 1: Simplify the Numerator

The numerator is: 923×6539^{\frac{2}{3}} \times 6^{\frac{5}{3}}

  1. Calculate 9239^{\frac{2}{3}}:

    • 9=329 = 3^2, so 923=(32)23=3439^{\frac{2}{3}} = (3^2)^{\frac{2}{3}} = 3^{\frac{4}{3}}.
  2. Calculate 6536^{\frac{5}{3}}:

    • 6=2×36 = 2 \times 3, so 653=(2×3)53=253×3536^{\frac{5}{3}} = (2 \times 3)^{\frac{5}{3}} = 2^{\frac{5}{3}} \times 3^{\frac{5}{3}}.

Now, combining these results in the numerator: 923×653=343×253×353=253×393=253×339^{\frac{2}{3}} \times 6^{\frac{5}{3}} = 3^{\frac{4}{3}} \times 2^{\frac{5}{3}} \times 3^{\frac{5}{3}} = 2^{\frac{5}{3}} \times 3^{\frac{9}{3}} = 2^{\frac{5}{3}} \times 3^3

Since 33=273^3 = 27, the simplified form of the numerator is: 27×25327 \times 2^{\frac{5}{3}}

Step 2: Simplify the Denominator

The denominator is: [ 2^{\frac{1}{3}} \sqrt[3]{9} \times 3^{\frac{1}{3}} \sqrt[3]{2} ]

  1. Simplify 93\sqrt[3]{9}:

    • 9=329 = 3^2, so 93=323\sqrt[3]{9} = 3^{\frac{2}{3}}.
  2. Simplify 23\sqrt[3]{2}:

    • This is just 2132^{\frac{1}{3}}.

Now rewrite the denominator using these simplifications: 213×323×313×213=223×333=223×32^{\frac{1}{3}} \times 3^{\frac{2}{3}} \times 3^{\frac{1}{3}} \times 2^{\frac{1}{3}} = 2^{\frac{2}{3}} \times 3^{\frac{3}{3}} = 2^{\frac{2}{3}} \times 3

Step 3: Divide the Numerator by the Denominator

Now we have: 27×253223×3\frac{27 \times 2^{\frac{5}{3}}}{2^{\frac{2}{3}} \times 3}

Separate the constants and simplify the powers of 2: =273×253223=9×233=9×2=18= \frac{27}{3} \times \frac{2^{\frac{5}{3}}}{2^{\frac{2}{3}}} = 9 \times 2^{\frac{3}{3}} = 9 \times 2 = 18

Final Answer

The simplified result is: 1818

Would you like further details, or do you have any questions?


Here are 5 related questions for practice:

  1. How would you simplify 843243\frac{8^{\frac{4}{3}}}{2^{\frac{4}{3}}}?
  2. What is the result of 923×4139^{\frac{2}{3}} \times 4^{\frac{1}{3}}?
  3. How would you simplify 2723353\frac{27^{\frac{2}{3}}}{3^{\frac{5}{3}}}?
  4. What is 643×163\sqrt[3]{64} \times \sqrt[3]{16}?
  5. How can you express 6736^{\frac{7}{3}} in terms of powers of 2 and 3?

Tip: When working with fractional exponents, remember that am/n=(am)1/n=amna^{m/n} = (a^m)^{1/n} = \sqrt[n]{a^m}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Fractional Powers
Simplification of Algebraic Expressions

Formulas

\( a^{m/n} = (a^m)^{1/n} \)
Properties of exponents such as \( a^m \times a^n = a^{m+n} \) and \( \frac{a^m}{a^n} = a^{m-n} \)

Theorems

Properties of Exponents

Suitable Grade Level

Grades 10-12