Math Problem Statement
Simplify the expression to a, plus, b, ia+bi form:
minus, square root of, 49, end square root, minus, square root of, minus, 36, end square root, plus, square root of, 9, end square root, minus, square root of, minus, 100, end square root
−49−−36+9−−100
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Complex Numbers
Imaginary Numbers
Square Roots
Formulas
√(x) where x is a positive number
√(−x) = i√(x) where x is a positive number
Theorems
Square root of a negative number involves imaginary numbers
Combining real and imaginary parts of complex numbers
Suitable Grade Level
Grades 10-12
Related Recommendation
Simplifying Square Roots of Positive and Negative Numbers in Complex Form
Simplify the Expression √49 + √(-27) + √36 + √(-27) to a + bi Form
Simplifying Expressions with Square Roots and Complex Numbers
Simplify Complex Expression Involving Imaginary Numbers
Simplifying Expressions with Imaginary Numbers: 4 + √-49