Math Problem Statement

Give me 4 more problems to do

Give me 4 more problems to do

Solution

Let's first simplify the problem shown in the image step-by-step and confirm the answer:

The given expression is:

(xy4x3y)2\left( \frac{xy^4}{x^{-3}y} \right)^{-2}

Step 1: Simplify inside the parentheses

Combine the xx-terms and yy-terms using the laws of exponents:

  • For xx: xx3=x1(3)=x4\frac{x}{x^{-3}} = x^{1 - (-3)} = x^4
  • For yy: y4y=y41=y3\frac{y^4}{y} = y^{4 - 1} = y^3

So, the expression simplifies to:

(x4y3)2\left( x^4 y^3 \right)^{-2}

Step 2: Apply the exponent 2-2

Distribute the 2-2 to each term:

  • For x4x^4: (x4)2=x4(2)=x8(x^4)^{-2} = x^{4 \cdot (-2)} = x^{-8}
  • For y3y^3: (y3)2=y3(2)=y6(y^3)^{-2} = y^{3 \cdot (-2)} = y^{-6}

So, the expression becomes:

x8y6x^{-8} y^{-6}

Step 3: Write with positive exponents

Using the property an=1ana^{-n} = \frac{1}{a^n}, rewrite the terms: x8y6=1x8y6x^{-8} y^{-6} = \frac{1}{x^8 y^6}

Thus, the simplified result is:

1x8y6\boxed{\frac{1}{x^8 y^6}}

Answer:

The correct choice is C.


Four More Problems:

  1. Simplify:
    (x2y3x1y2)3\left( \frac{x^2 y^{-3}}{x^{-1} y^2} \right)^3

  2. Simplify:
    (a5b2a3b3)1\left( \frac{a^5 b^{-2}}{a^{-3} b^3} \right)^{-1}

  3. Expand and simplify:
    (2x2y1)3(x3y2)2(2x^2 y^{-1})^3 \cdot (x^{-3} y^2)^2

  4. Simplify:
    (m2n4m3n5)2\left( \frac{m^2 n^{-4}}{m^{-3} n^5} \right)^{-2}


Tip:

Always simplify the terms inside parentheses first before applying the outer exponents.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponent Rules
Simplifying Algebraic Expressions
Negative Exponents

Formulas

a^m / a^n = a^(m-n)
(a^m)^n = a^(m*n)
a^-n = 1 / a^n

Theorems

Laws of Exponents

Suitable Grade Level

Grades 9-11