Math Problem Statement

Simplify the expression (6x^3 y^{-3} z^{-4} / 9x^{-5} y z^{-3})^{-2}

Solution

The problem asks to simplify the following expression:

(6x3y3z49x5yz3)2\left( \frac{6x^3 y^{-3} z^{-4}}{9x^{-5} y z^{-3}} \right)^{-2}

Step-by-Step Simplification

  1. Simplify the expression inside the parentheses:

    Start by dividing the terms inside the fraction:

    6x3y3z49x5yz3=69x3x5y3yz4z3\frac{6x^3 y^{-3} z^{-4}}{9x^{-5} y z^{-3}} = \frac{6}{9} \cdot \frac{x^3}{x^{-5}} \cdot \frac{y^{-3}}{y} \cdot \frac{z^{-4}}{z^{-3}}

  2. Simplify constants: 69=23\frac{6}{9} = \frac{2}{3}

  3. Simplify powers of xx: Use the rule aman=amn\frac{a^m}{a^n} = a^{m-n}: x3x5=x3(5)=x3+5=x8\frac{x^3}{x^{-5}} = x^{3 - (-5)} = x^{3 + 5} = x^8

  4. Simplify powers of yy: y3y=y31=y4\frac{y^{-3}}{y} = y^{-3 - 1} = y^{-4}

  5. Simplify powers of zz: z4z3=z4(3)=z4+3=z1\frac{z^{-4}}{z^{-3}} = z^{-4 - (-3)} = z^{-4 + 3} = z^{-1}

    So, the expression inside the parentheses becomes: 23x8y4z1\frac{2}{3} x^8 y^{-4} z^{-1}

  6. Apply the exponent of 2-2: Now apply the power 2-2 to the entire expression: (23x8y4z1)2\left( \frac{2}{3} x^8 y^{-4} z^{-1} \right)^{-2}

    Distribute the exponent 2-2 to each part: 2232x8×(2)y4×(2)z1×(2)\frac{2^{-2}}{3^{-2}} \cdot x^{8 \times (-2)} \cdot y^{-4 \times (-2)} \cdot z^{-1 \times (-2)}

    Simplifying each part: 2232=94,x16,y8,z2\frac{2^{-2}}{3^{-2}} = \frac{9}{4}, \quad x^{-16}, \quad y^8, \quad z^2

    So, the final simplified expression is: 94x16y8z2\frac{9}{4} x^{-16} y^8 z^2

Or, alternatively: 9y8z24x16\frac{9y^8z^2}{4x^{16}}

This is the simplified form of the given expression.

Would you like further clarification or details on any step? Here are five related questions you might find helpful:

  1. How can negative exponents be converted to positive ones?
  2. What are the laws of exponents and how are they applied in algebraic expressions?
  3. How do you handle fractional expressions with multiple variables?
  4. What happens when an expression with negative exponents is raised to a negative power?
  5. How would the process change if the exponent was a different value, like 3-3?

Tip: Always handle constants, variables, and exponents separately to avoid confusion when simplifying complex expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Laws of Exponents
Simplification

Formulas

Exponent rule: a^m / a^n = a^{m-n}
Negative exponent rule: a^{-n} = 1 / a^n

Theorems

Laws of Exponents

Suitable Grade Level

Grades 9-12