Math Problem Statement

cos²75⁰-sin²75⁰

Solution

We can solve cos275sin275\cos^2 75^\circ - \sin^2 75^\circ using the trigonometric identity:

cos2xsin2x=cos(2x)\cos^2 x - \sin^2 x = \cos(2x)

Step-by-step solution:

  1. Here, x=75x = 75^\circ.
  2. Substitute x=75x = 75^\circ into the identity: cos275sin275=cos(275)\cos^2 75^\circ - \sin^2 75^\circ = \cos(2 \cdot 75^\circ)
  3. Simplify 2752 \cdot 75^\circ: cos(150)\cos(150^\circ)
  4. Using the unit circle, cos(150)=32\cos(150^\circ) = -\frac{\sqrt{3}}{2}.

Final Answer:

cos275sin275=32\cos^2 75^\circ - \sin^2 75^\circ = -\frac{\sqrt{3}}{2}


Would you like a detailed explanation of the trigonometric identity or a breakdown of cosine values for specific angles? Let me know!

5 Related Questions:

  1. What is the derivation of the formula cos2xsin2x=cos(2x)\cos^2 x - \sin^2 x = \cos(2x)?
  2. How do you calculate sin(150)\sin(150^\circ) or tan(150)\tan(150^\circ)?
  3. Can this formula be used to simplify other angles, such as cos245sin245\cos^2 45^\circ - \sin^2 45^\circ?
  4. What is the value of cos75\cos 75^\circ and sin75\sin 75^\circ individually?
  5. How do trigonometric identities help in simplifying equations?

Tip:

Always remember the unit circle properties to quickly find trigonometric values for standard angles like 30,45,60,90,120,30^\circ, 45^\circ, 60^\circ, 90^\circ, 120^\circ, and more.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities

Formulas

cos²x - sin²x = cos(2x)

Theorems

Trigonometric Identity for Double Angle

Suitable Grade Level

Grades 9-12