Math Problem Statement

Use an identity to write the expression as a single number.

2 cosine squared left parenthesis 22.5 degrees right parenthesis minus 12cos2(22.5°)−1

Question content area bottom

Part 1

A.StartFraction StartRoot 2 EndRoot Over 4 EndFraction

StartFraction StartRoot 2 EndRoot Over 4 EndFraction24

B.StartRoot 3 EndRoot

StartRoot 3 EndRoot3

C.StartFraction StartRoot 3 EndRoot Over 3 EndFraction

StartFraction StartRoot 3 EndRoot Over 3 EndFraction33

D.StartFraction StartRoot 2 EndRoot Over 2 EndFraction

StartFraction StartRoot 2 EndRoot Over 2 EndFraction

Solution

To simplify the expression 2cos2(22.5)12\cos^2(22.5^\circ) - 1, we can use a trigonometric identity. Here are the steps:

Step 1: Use the Double-Angle Identity for Cosine

The expression 2cos2(x)12\cos^2(x) - 1 can be simplified using the double-angle identity for cosine: 2cos2(x)1=cos(2x).2\cos^2(x) - 1 = \cos(2x).

Step 2: Apply the Identity

For x=22.5x = 22.5^\circ, we substitute into the identity: 2cos2(22.5)1=cos(2×22.5)=cos(45).2\cos^2(22.5^\circ) - 1 = \cos(2 \times 22.5^\circ) = \cos(45^\circ).

Step 3: Find the Value of cos(45)\cos(45^\circ)

We know that: cos(45)=22.\cos(45^\circ) = \frac{\sqrt{2}}{2}.

So, the expression 2cos2(22.5)12\cos^2(22.5^\circ) - 1 simplifies to 22\frac{\sqrt{2}}{2}.

Answer

The correct answer is: D. 22\frac{\sqrt{2}}{2}.

Would you like further clarification or details on any of these steps?


Here are five related questions to expand your understanding:

  1. How would you simplify 2sin2(x)12\sin^2(x) - 1 using an identity?
  2. What is the value of cos(30)\cos(30^\circ) in exact form?
  3. How can we use identities to simplify expressions involving sin2(x)+cos2(x)\sin^2(x) + \cos^2(x)?
  4. Why is cos(45)=22\cos(45^\circ) = \frac{\sqrt{2}}{2}?
  5. Can this type of identity be used for angles not in degrees, such as radians?

Tip: Memorizing common trigonometric identities can make simplifying expressions much quicker and easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Double-Angle Identity

Formulas

2cos^2(x) - 1 = cos(2x)
cos(45°) = √2 / 2

Theorems

Double-Angle Identity for Cosine

Suitable Grade Level

Grades 9-11