Math Problem Statement

Express in simplest a + bi form: (3 - 4xi)(5 + i) - (3 - 4xi)(5 + 4i)

Solution

Let's solve the given expression step by step and express it in the form a+bia + bi. The expression is:

(34xi)(5+i)(34xi)(5+4i)(3 - 4xi)(5 + i) - (3 - 4xi)(5 + 4i)

Step 1: Expand each product

We will use the distributive property to expand both parts.

For the first part:

(34xi)(5+i)=3(5+i)4xi(5+i)(3 - 4xi)(5 + i) = 3(5 + i) - 4xi(5 + i) =35+3i4xi54xii= 3 \cdot 5 + 3 \cdot i - 4xi \cdot 5 - 4xi \cdot i =15+3i20xi4x(1)(since i2=1)= 15 + 3i - 20xi - 4x(-1) \quad (\text{since } i^2 = -1) =15+3i20xi+4x= 15 + 3i - 20xi + 4x =(15+4x)+(320x)i= (15 + 4x) + (3 - 20x)i

For the second part:

(34xi)(5+4i)=3(5+4i)4xi(5+4i)(3 - 4xi)(5 + 4i) = 3(5 + 4i) - 4xi(5 + 4i) =35+34i4xi54xi4i= 3 \cdot 5 + 3 \cdot 4i - 4xi \cdot 5 - 4xi \cdot 4i =15+12i20xi16x(1)(since i2=1)= 15 + 12i - 20xi - 16x(-1) \quad (\text{since } i^2 = -1) =15+12i20xi+16x= 15 + 12i - 20xi + 16x =(15+16x)+(1220x)i= (15 + 16x) + (12 - 20x)i

Step 2: Subtract the second part from the first

Now, subtract the second expression from the first: [ [(15 + 4x) + (3 - 20x)i] - [(15 + 16x) + (12 - 20x)i] ]

Separate the real and imaginary parts:

  • Real part: (15+4x)(15+16x)=15+4x1516x=12x(15 + 4x) - (15 + 16x) = 15 + 4x - 15 - 16x = -12x

  • Imaginary part: (320x)(1220x)=320x12+20x=9(3 - 20x) - (12 - 20x) = 3 - 20x - 12 + 20x = -9

Step 3: Final result

The result in the form a+bia + bi is: 12x9i-12x - 9i

So, the simplified form is: 12x9i-12x - 9i

Would you like more details or explanations on any step? Here are five related questions that can help deepen your understanding:

  1. How does the distributive property work in complex number multiplication?
  2. Why is i2=1i^2 = -1 significant in simplifying complex expressions?
  3. How can you handle subtraction of complex numbers effectively?
  4. What happens when you multiply complex numbers that involve variables like xx?
  5. How can you generalize this process for other complex number expressions?

Tip: Always group real and imaginary parts separately when simplifying complex expressions to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Algebraic Expansion
Imaginary Unit

Formulas

(a + bi)(c + di) = (ac - bd) + (ad + bc)i
i^2 = -1

Theorems

Properties of Complex Numbers
Distributive Property

Suitable Grade Level

Grades 10-12